精英家教网 > 初中数学 > 题目详情
7.用两种正多边形镶嵌,不能与正三角形匹配的正多边形是(  )
A.正方形B.正六边形C.正八边形D.正十二边形

分析 由镶嵌的条件知,在一个顶点处各个内角和为360°.依此即可解答.

解答 解:A、正三角形的每个内角是60°,正方形的每个内角是90°.∵3×60°+2×90°=360°,∴正方形能匹配;
B、正六边形的每个内角是120°,正三角形的每个内角是60度.∵2×120°+2×60°=360°,或120°+4×60°=360°,∴正六边形能匹配;
C、正三角形的每个内角是60°,正八边形内角为135°,显然不能构成360°的周角,故不能匹配.
D、正三角形的每个内角是60°,正十二边形的每个内角是180°-360°÷12=150°,∵60°+2×150°=360°,∴正十二边形能匹配;
故选C.

点评 考查了平面镶嵌(密铺).几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.“知识改变命运,科技繁荣祖国”,某区中小学每年都要举办一届科技比赛,如图为某区某校2017年参加科技比赛(包括电子百拼、航模、机器人、建模四个类别)的参赛人数统计图.
(1)该校参加机器人、建模比赛的人数分别是4人和6人;
(2)该校参加科技比赛的总人数是24人,电子百拼所在扇形的圆心角的度数是120°,并把条形统计图补充完整;
(3)从全区中小学参加科技比赛选手中随机抽取85人,其中有34人获奖.2017年某区中小学参加科技比赛人数共有3625人,请你估算2017年参加科技比赛的获奖人数约是多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.在△ABC中,AB=AC,以AB为直径的⊙O分别交边BC、AC于点D、点E,且AE=BE.
(1)如图①,求∠EBC的度数;
(2)如图②,过点D作⊙O的切线交AB的延长线于点G,交AC于点F,若⊙O的直径为10,求BG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.下列图案是轴对称图形但不是中心对称图形的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.某企业今年3月份产值为m万元,4月份比3月份减少了8%,预测5月份比4月份增加9%,则5月份的产值是(  )
A.(m-8%)(m+9%)万元B.(1-8%)(1+9%)m万元C.(m-8%+9%)万元D.(m-8%+9%)m万元

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.定义:有三个内角相等凸四边形叫三等角四边形.
(1)三等角四边形ABCD中,∠A=∠B=∠C,求∠A的取值范围;
(2)如图,折叠平行四边形纸片DEBF,使顶点E,F分别落在边BE,BF上的点A,C处,折痕分别为DG,DH.求证:四边形ABCD是三等角四边形.
(3)三等角四边形ABCD中,∠A=∠B=∠C<90°,若CB=CD=4,则当AD的长为何值时,AB的长最大,其最大值是多少?(作图解答)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.抛物线y=4x2-2ax+b与x轴相交于A(x1,0),B(x2,0)(0<x1<x2)两点,与y轴交于点C.
(1)设AB=2,tan∠ABC=4,求该抛物线的解析式;
(2)在(1)中,若点D为直线BC下方抛物线上一动点,当△BCD的面积最大时,求点D的坐标;
(3)是否存在整数a,b使得1<x1<2和1<x2<2同时成立,请证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图是一个正方体的表面展开图,则原正方体中与“魅”字所在的面相对的面上标的字是(  )
A.B.C.广D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论:
①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0.
其中正确的是(  )
A.①④B.②④C.①②③D.①②③④

查看答案和解析>>

同步练习册答案