【题目】如图,面积为8的矩形ABOC的边OB、OC分别在x轴、y轴的正半轴上,点A在双曲线y=的图象上,且AC=2.
(1)求k值;
(2)矩形BDEF,BD在x轴的正半轴上,F在AB上,且BD=OC,BF=OB.双曲线交DE于M点,交EF于N点,求△MEN的面积.
【答案】(1)y=;(2)
【解析】试题分析:(1)根据矩形的面积求出AB,求出A的坐标,代入反比例函数解析式求出即可;
(2)先求出BF和OD,代入函数解析式求出点的坐标,求出EN和EM,根据面积公式求出即可.
试题解析:解:(1)∵矩形ABOC的面积为8,AC=2,∴OC=AB=8÷2=4,AC=OB=2,∴A点的坐标为(2,4),∵点A在双曲线的图象上,∴代入得:k=8;
(2)由(1)知:反比例函数的解析式为,∵BD=OC,BF=OB,OC=4,OB=2,又∵四边形BDEF是矩形,∴BD=EF=4,BF=DE=2,OD=BD+OB=6,把y=2代入得:x=4,即N点的坐标为(4,2),把x=6代入得:y=,即M的坐标为(6, ),∴EN=6﹣4=2,EM=2﹣=,∴△MEN的面积为=.
科目:初中数学 来源: 题型:
【题目】阅读与思考:整式乘法与因式分解是方向相反的变形
由(x+p)(x+q)=x2+(p+q)x+pq得x2+(p+q)x+pq=(x+p)(x+q)
利用这个式子可以将某些二次项系数是1的二次三项式分解因式,
例如:将式子x2+3x+2分解因式.
分析:这个式子的常数项2=1×2一次项系数3=1+2
所以x2+3x+2=x2+(1+2)x=1×2
解:x2+3x+2=(x+)(x+2)
请仿照上面的方法,解答下列问题:
(1)分解因式:x2+6x-27=__________________;
(2)若x2+px+8可分解为两个一次因式的积,则整数的所有可能值是_________________;
(3)利用因式分解法解方程:x2-4x-12=0..
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线分别与轴、轴交于点、,且与直线交于点.
(1)若是线段上的点,且的面积为,求直线的函数表达式.
()在()的条件下,设是射线上的点,在平面内是否存在点,使以、、、为顶点的四边形是菱形?若存在,直接写出点的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】程大位所著《算法统宗》是一部中国传统数学重要的著作.在《算法统宗》中记载:“平地秋千未起,踏板离地一尺.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几?”【注释】1步=5尺.
译文:“当秋千静止时,秋千上的踏板离地有1尺高,如将秋千的踏板往前推动两步(10尺)时,踏板就和人一样高,已知这个人身高是5尺.美丽的姑娘和才子们,每天都来争荡秋千,欢声笑语终日不断.好奇的能工巧匠,能算出这秋千的绳索长是多少吗?”
如图,假设秋千的绳索长始终保持直线状态,OA是秋千的静止状态,A是踏板,CD是地面,点B是推动两步后踏板的位置,弧AB是踏板移动的轨迹.已知AC=1尺,CD=EB=10尺,人的身高BD=5尺.设绳索长OA=OB=x尺,则可列方程为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个不透明的盒子里装着除颜色外完全相同的黑、白两种小球共40个,小明做摸球试验,他将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是试验中的一组统计数据:
(1)请估计:当n很大时,摸到白球的概率约为______;(精确到0.1)
(2)估算盒子里有白球________个;
(3)若向盒子里再放入x个除颜色以外其他完全相同的球,这x个球中白球只有1个,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回,通过大量重复摸球试验后发现,摸到白球的频率稳定在50%,请推测x的值最有可能是多少.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知,在△ABC中,∠B<∠C,AD平分∠BAC,E的线段AD(除去端点A、D)上一动点,EF⊥BC于点F.
(1)若∠B=40°,∠DEF=10°,求∠C的度数.
(2)当E在AD上移动时,∠B、∠C、∠DEF之间存在怎样的等量关系?请写出这个等量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知正比例函数y1=-x与反比例函数y2=的图象经过A(-2,1)点,求:
(1)反比例函数的解析式.
(2)正比例与反比例函数另一个交点B的坐标.
(3)当x在什么范围,y1=y2,当x在什么范围,y1<y2,当x在什么范围,y1>y2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】实验与探究:
()由图观察易知关于直线的对称点的坐标为,请在图中分别标明、关于直线的对称点、的位置,并写出他们的坐标:__________、__________.
归纳与发现:
()结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点关于第一、三象限的角平分线的对称点的坐标为__________(不必证明).
运用与拓广:
()已知两点、,试在直线上确定一点,使点到、两点的距离之和最小,并求出点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,把△ABC纸片沿DE折叠,当点A在四边形BCDE的外部时,记∠AEB为∠1,∠ADC为∠2,则∠A、∠1与∠2的数量关系,结论正确的是( )
A. ∠1=∠2+∠A B. ∠1=2∠A+∠2
C. ∠1=2∠2+2∠A D. 2∠1=∠2+∠A
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com