精英家教网 > 初中数学 > 题目详情
9.如图,D,E,F,B四点共线,AB∥CD,∠AEB=∠CFD,BF=DE.求证.AE=CF.

分析 根据AB∥CD,得到∠B=∠D,由BF=DE,得到BE=DF,证明△AEB≌△CFD,根据全等三角形的对应边相等,即可解答.

解答 解:∵AB∥CD,
∴∠B=∠D,
∵BF=DE,
∴BF+EF=DE+EF,
即BE=DF,
在△AEB和△CFD中,
$\left\{\begin{array}{l}{∠B=∠D}\\{BE=DF}\\{∠AEB=∠CFD}\end{array}\right.$
∴△AEB≌△CFD,
∴AE=CF.

点评 本题考查了等角的补角相等的性质的运用,全等三角形的判定与性质的运用,解答时证明三角形全等是关键

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

19.多项式3x2+10x-8分解因式后得(3x-2)(x+4).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如图所示,长方形内有两个相邻的正方形,面积分别为9和a2(a>0),那么阴影部分的面积为3a-a2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,在Rt△ABC中,已知,∠ACB=90°,∠B=15°,AB边的垂直平分线交AB于E,交BC于D,且BD=13cm,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.已知a、b、c在数轴上的位置如图.
(1)试比较a,-a,b,-b,c,-c的大小;
(2)化简:|a-b|+|b+c|+|b-c|.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,∠C=90°,∠1=∠2,若BC=20,BD=15,则点D到AB的距离为5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,在△ABC中,边BC的垂直平分线分别交AC、BC于点E、D,△ABE的周长是15,BD=5,求△ABC的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.化简求解:
(1)(210-1×2×4×8×16)5
(2)[(b-a)n]2•(a-b)n

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.小明的爸爸买了摩托车的零件,说明书上有符号“φ20+0.03-0.02(单位:mm)”,其中φ表示直径,它表示的意思是零件直径在20.03~19.98范围内是合格的.

查看答案和解析>>

同步练习册答案