精英家教网 > 初中数学 > 题目详情
Rt△ABC 中,∠C=90 并且AC=4cm,AB=5cm,则AB上的高=
12
5
12
5
cm.
分析:因为∠C=90°,所以AB为斜边,先根据勾股定理求得直角边BC的长,再根据面积相等,即可求出斜边上的高.
解答:解:根据勾股定理得:BC=
52-42
=3cm,
根据面积相等,设斜边上的高为xcm,
列方程得:
1
2
×3×4=
1
2
×5x,
解得x=
12
5
cm.
故答案为:
12
5
点评:本题考查勾股定理的知识,注意利用面积相等来解题,是解决直角三角形问题的常用的方法,可有效简化计算.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°,DE垂直平分BC,垂足为D,交AB于点E.又点F在DE的精英家教网延长线上,且AF=CE.求证:四边形ACEF是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在Rt△ABC中,∠BAC=90°,点D、E、F分别是三边的中点,且CF=3cm,则DE=
 
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,Rt△ABC中,AC⊥BC,CD⊥AB于D,AC=8,BC=6,则AD=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等腰Rt△ABC中,∠C=90°,正方形DEFG的顶点D在边AC上,点E、F在边AB上,精英家教网点G在边BC上.
(1)求证:AE=BF;
(2)若BC=
2
cm,求正方形DEFG的边长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,Rt△ABC中,∠C=90°,D为AB的中点,DE⊥AB,AB=20,AC=12,则四边形ADEC的面积为
 

查看答案和解析>>

同步练习册答案