精英家教网 > 初中数学 > 题目详情
9.已知点P是线段AB的一个黄金分割点(AP>PB),则PB:AB的值为(  )
A.$\frac{3-\sqrt{5}}{2}$B.$\frac{\sqrt{5}-1}{2}$C.$\frac{1+\sqrt{5}}{2}$D.$\frac{3-\sqrt{5}}{4}$

分析 把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,它们的比值$\frac{\sqrt{5}-1}{2}$叫做黄金比.

解答 解:根据题意得AP=$\frac{\sqrt{5}-1}{2}$AB,
所以PB=AB-AP=$\frac{3-\sqrt{5}}{2}$AB,
所以PB:AB=$\frac{3-\sqrt{5}}{2}$.
故选A.

点评 本题考查了黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点;其中AC=$\frac{\sqrt{5}-1}{2}$AB≈0.618AB,并且线段AB的黄金分割点有两个.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.在“阳光体育”活动时间,小英、小丽、小敏、小洁四位同学进行一次羽毛球单打比赛,要从中选出两位同学打第一场比赛.
(1)若已确定小英打第一场,再从其余三位同学中随机选取一位,求恰好选中小丽同学的概率;
(2)用画树状图或列表的方法,求恰好选中小敏、小洁两位同学进行比赛的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.某中学组织规范汉字书写大赛活动,按一、二、三和优秀奖四个等级进行评奖,对获奖人数进行统计,并制成两幅如图所示不完整的统计图.根据图中信息解答下列问题:
(1)全校参赛总获奖人数是50人;
(2)补全频数直方图②;
(3)如图①所示的扇形统计图中优秀奖部分所对应的圆心角是198度;
(4)若其中一等奖有男、女同学各2名,从中随机选取2名参加市级比赛,求出恰好是1男1女的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.如图,将矩形ABCD分割成1个灰色矩形与148个面积相等的小正方形,若灰色矩形之长与宽的比为5:3,则AD:AB的值是(  )
A.5:3B.11:7C.23:15D.47:29

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.阅读材料:若a,b都是非负实数,则a+b≥2$\sqrt{ab}$.当且仅当a=b时,“=”成立.
证明:∵($\sqrt{a}$-$\sqrt{b}$)2≥0,∴a-2$\sqrt{ab}$+b≥0,∴a+b≥2$\sqrt{ab}$.当且仅当a=b时,“=”成立.
举例应用:已知x>0,求函数y=2x+$\frac{2}{x}$的最小值.
解:y=2x+$\frac{2}{x}$≥2$\sqrt{2x•\frac{2}{x}}$=4,当且仅当2x=$\frac{2}{x}$,即2x2=2,当x=1时,y有最小值为4.
问题解决:汽车的经济时速是指汽车最省油的行驶速度.某种跑车在每小时90~150公里之间行驶时(含90公里和150公里),每公里耗油($\frac{1}{21}$+$\frac{525}{{x}^{2}}$)升.若该汽车以每小时x公里的速度匀速行驶,1小时的耗油量为y升.
(1)求y关于x的函数关系式;
(2)利用上述阅读材料,求该跑车的经济时速,并求当跑车以经济时速行驶时,每百公里的耗油量(升)(结果保留小数点后一位).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.观察下列等式:
①$\frac{1}{\sqrt{2}+1}$=$\frac{\sqrt{2}-1}{(\sqrt{2}+1)(\sqrt{2}-1)}$=$\sqrt{2}-1$;
②$\frac{1}{\sqrt{3}+\sqrt{2}}$=$\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}$=$\sqrt{3}-\sqrt{2}$;
③$\frac{1}{\sqrt{4}+\sqrt{3}}$=$\frac{\sqrt{4}-\sqrt{3}}{(\sqrt{4}+\sqrt{3})(\sqrt{4}-\sqrt{3})}$=$\sqrt{4}$-$\sqrt{3}$;…
回答下列问题:
(1)化简:$\frac{1}{\sqrt{2015}+\sqrt{2014}}$=$\sqrt{2015}$-$\sqrt{2014}$;
(2)化简:$\frac{1}{\sqrt{n+1}+\sqrt{n}}$=$\sqrt{n+1}$-$\sqrt{n}$;(n为正整数);
(3)利用上面所揭示的规律计算:
$\frac{1}{1+\sqrt{2}}$$+\frac{1}{\sqrt{2}+\sqrt{3}}$$+\frac{1}{\sqrt{3}+\sqrt{4}}$+…+$\frac{1}{\sqrt{2013}+\sqrt{2014}}$+$\frac{1}{\sqrt{2014}+\sqrt{2015}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.有六张不透明的卡片,正面的数分别为3.1,$\frac{7}{3}$,$\sqrt{\frac{1}{4}}$,π,$\sqrt{6}$,3.$\stackrel{••}{12}$,除正面的数不同外,其余都相同,将它们背面朝上洗匀后,从中随机抽取一张卡片,抽到写有无理数卡片的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{5}{6}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.已知x=$\sqrt{3}$,xy=1,则$\frac{x}{y}$=3.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.若一个方程组的一个解为$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$,则这个方程组可以是$\left\{\begin{array}{l}{x+y=3}\\{x-y=1}\end{array}\right.$(答案不唯一).

查看答案和解析>>

同步练习册答案