【题目】某校为了解初中学生每天在校体育活动的时间(单位:h),随机调査了该校的部分初中学生.根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:
(Ⅰ)本次接受调查的初中学生人数为___________,图①中m的值为_____________;
(Ⅱ)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;
(Ⅲ)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于1h的学生人数.
【答案】(Ⅰ)40,25;(Ⅱ)平均数是1.5,众数为1.5,中位数为1.5;(Ⅲ)每天在校体育活动时间大于1h的学生人数约为720.
【解析】
(Ⅰ)求得直方图中各组人数的和即可求得学生人数,利用百分比的意义求得m;
(Ⅱ)利用加权平均数公式求得平均数,然后利用众数、中位数定义求解;
(Ⅲ)利用总人数乘以对应的百分比即可求解.
解:(Ⅰ)本次接受调查的初中学生人数为:4+8+15+10+3=40(人),
m=100×=25.
故答案是:40,25;
(Ⅱ)观察条形统计图,
∵,
∴这组数据的平均数是1.5.
∵在这组数据中,1.5出现了15次,出现的次数最多,
∴这组数据的众数为1.5.
∵将这组数据按从小到大的顺序棑列,其中处于中间的两个数都是1.5,有,
∴这组数据的中位数为1.5.
(Ⅲ)∵在统计的这组每天在校体育活动时间的样本数据中,每天在校体育活动时间大于1h的学生人数占90%,
∴估计该校800名初中学生中,每天在校体育活动时间大于1h的人数约占90%.有.
∴该校800名初中学生中,每天在校体育活动时间大于1h的学生人数约为720.
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,点E,F分别在BC,CD上,AE=AF,AC与EF相交于点G.下列结论:①AC垂直平分EF;②BE+DF=EF;③当∠DAF=15°时,△AEF为等边三角形;④当∠EAF=60°时,S△ABE=S△CEF.其中正确的是( )
A. ①③B. ②④C. ①③④D. ②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,二次函数交轴于点、,交轴于点,在轴上有一点,连接.
(1)求二次函数的表达式;
(2)若点为抛物线在轴负半轴上方的一个动点,求面积的最大值;
(3)抛物线对称轴上是否存在点,使为等腰三角形,若存在,请直接写出所有点的坐标,若不存在请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,AF,BE是△ABC的中线,AF⊥BE,垂足为点P,设BC=a,AC=b,AB=c,则a2+b2=5c2,利用这一性质计算.如图2,在平行四边形ABCD中,E,F,G分别是AD,BC,CD的中点,EB⊥EG于点E,AD=8,AB=2,则AF=__.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c的部分图象如图,则下列说法错误的是( )
A. 对称轴是直线x=﹣1
B. abc<0
C. b2﹣4ac>0
D. 方程ax2+bx+c=0的根是x1=﹣3和x2=1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在矩形纸片ABCD中,AB=2,AD=6,将纸片沿对角线AC对折,点D落在点P处.
(1)填空:∠BCA的大小是 ;
(2)如图2,吕家三少将折叠后的纸片沿着AC剪开,把△APC绕点A逆时针旋转α角(0°≤α≤90°),得到△AP′C′,点P,C分别对应点P′,C′,P′A交BC于点E,P′C′交CD于点F.
①点α=15时,求证:AB=BE;
②填空:当点P′落在边BC上时,连接AF,则tan∠DAF的值为 ;
③填空:在②的条件下,将△AP′C′沿着AP′折叠至△AP′C″处,点C′对应点C″,AC″交BC于点G,则线段BG的长度为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,以AC为直径的⊙O交AB于点D,连接CD,∠BCD=∠A.
(1)求证:BC是⊙O的切线;
(2)若BC=5,BD=3,求点O到CD的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小王是“新星厂”的一名工人,请你阅读下列信息:
信息一:工人工作时间:每天上午8:00—12:00,下午14:00—18:00,每月工作25天;
信息二:小王生产甲、乙两种产品的件数与所用时间的关系见下表:
生产甲种产品数(件) | 生产乙种产品数(件) | 所用时间(分钟) |
10 | 10 | 350 |
30 | 20 | 850 |
信息三:按件计酬,每生产一件甲种产品得1.50元,每生产一件乙种产品得2.80元;
信息四:该厂工人每月收入由底薪和计酬工资两部分构成,小王每月的底薪为1900元.请根据以上信息,解答下列问题:
(1)小王每生产一件甲种产品和一件乙种产品分别需要多少分钟;
(2)2018年1月工厂要求小王生产甲种产品的件数不少于60件,则小王该月收入最多是多少元?此时小王生产的甲、乙两种产品分别是多少件?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com