分析 (1)根据∠ACB=90°、CE⊥CD利用角的计算即可得出∠BCD=∠FCE,再结合CB=CF、CD=CE即可证出△BCD≌△FCE(SAS);
(2)由(1)可得出∠BDC=∠FEC,由EF∥CD利用平行线的性质即可得出∠DCE+∠FEC=180°,再结合CE⊥CD即可得出结论.
解答 (1)证明:∵∠ACB=90°,CE⊥CD,
∴∠BCD+∠DCA=90°=∠DCA+∠FCE,
∴∠BCD=∠FCE.
在△BCD和△FCE中,$\left\{\begin{array}{l}{CB=CF}\\{∠BCD=∠FCE}\\{CD=CE}\end{array}\right.$,
∴△BCD≌△FCE(SAS).
(2)解:∵△BCD≌△FCE,
∴∠BDC=∠FEC.
∵EF∥CD,
∴∠DCE+∠FEC=180°,
又∵CE⊥CD,
∴∠FEC=180°-∠DCE=180°-90°=90°,
∴∠BDC=90°.
点评 本题考查了全等三角形的判定与性质、垂直的定义以及平行线的性质,熟练掌握全等三角形的判定定理是解题的关键.
科目:初中数学 来源: 题型:选择题
A. | $\frac{y}{2}$ | B. | $\frac{1}{a-1}$ | C. | x | D. | $\frac{1}{3π}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 7.605 7×105人 | B. | 7.605 7×106人 | C. | 7.605 7×107人 | D. | 0.760 57×107人 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | S=x(20-x) | B. | S=x(20-2x) | C. | S=x(10-x) | D. | S=2x(10-x) |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com