精英家教网 > 初中数学 > 题目详情
16.如图,已知抛物线y=$\frac{1}{2}$x2-x与直线y=2x交于O(0,0),A(a,12),点B是抛物线上O,A之间的一个动点,过点B分别作x轴、y轴的平行线与直线OA交于点C,E,以BC,BE为边构造矩形BCDE,设点D的坐标为(m,n),求出m,n之间的关系式.

分析 将点A的坐标代入直线解析式求出a的值,继而将点A的坐标代入抛物线解析式可得出b的值,继而得出抛物线解析式;根据点D的坐标,可得出点E的坐标,点C的坐标,继而确定点B的坐标,将点B的坐标代入抛物线解析式可求出m,n之间的关系式.

解答 解:(1)∵点A(a,12)在直线y=2x上,
∴12=2a,
解得:a=6,
又∵点A是抛物线y=$\frac{1}{2}$x2+bx上的一点,
将点A(6,12)代入y=$\frac{1}{2}$x2+bx,可得b=-1,
∴抛物线解析式为y=$\frac{1}{2}$x2-x.

(2)∵直线OA的解析式为:y=2x,
点D的坐标为(m,n),
∴点E的坐标为($\frac{1}{2}$n,n),点C的坐标为(m,2m),
∴点B的坐标为($\frac{1}{2}$n,2m),
把点B($\frac{1}{2}$n,2m)代入y=$\frac{1}{2}$x2-x,可得m=$\frac{1}{16}$n2-$\frac{1}{4}$n,
∴m、n之间的关系式为m=$\frac{1}{16}$n2-$\frac{1}{4}$n.

点评 本题考查了矩形的性质、待定系数法求二次函数解析式的知识,解答本题需要同学们能理解矩形四个顶点的坐标之间的关系.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.如图,△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,∠AFD=152°,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.若x=a+1是不等式$\frac{1}{2}x$-1<2的解,则a<5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.已知对于任意实数x,kx2-2x+k恒为正数,求实数k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,PA、PB分别切⊙O于A、B两点,过劣弧$\widehat{AB}$上的一点C作⊙O的切线分别交PA、PB于D、E.求证:∠DOE=90°-$\frac{1}{2}$∠P.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,在平面直角坐标系中,长方形OABC的顶点A、C分别在x轴、y轴的正半轴上,点B的坐标为(8,4),将该长方形沿OB翻折,点A的对应点为点D,OD与BC交于点E.
(1)求点E的坐标;
(2)点M是OB上任意一点,点N是OA上任意一点,是否存在点M、N,使得AM+MN最小?若存在,求出其最小值,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.上海世博会区间,某博物馆每周都吸引大量中外游客前来参观,如果游客过多,对馆中的珍贵文物会产生不利影响,但同时考虑到文物的修缮和保存费用问题,还要保证一定的门票收入.因此,博物馆采取了涨浮门票价格的方法来控制参观人数,在该方法实施过程中发现:每周参观人数与票价之间存在着如图所示的一次函数关系,在这样的情况下.
(1)如果确保每周4万元的门票收入,那么每周应限定参观人数是多少?门票价格应是多少元?
(2)门片价格应该是多少元时门票收入最大,这样每周应有多少人参观?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.如图,已知Rt△OAB,∠OAB=60°,∠AOB=90°,O点与坐标系原点重合,若点P在x轴上,且△APB是等腰三角形,则点P的坐标可能有(  )个.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.我市某地的一种水产品由于运输原因,长期只能在当地销售,当地政府对该水产品的销售投资收益为:每投入x万元,可获得利润p=-$\frac{1}{25}$(x-60)2+40(万元),当地政府拟在“十二•五”规划中加快开发该水产品的销售,其规划方案为:
在规划前后对该项目每年最多可投入100万元的销售投资,在实施规划5年的前两年中,每年都从100万元中拨出50万元用于修建一条公路,两年修成,通车前该水产品只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售,在外地销售的投资收益为:每投入x万元,可获利润w=-$\frac{24}{25}$(100-x)2+$\frac{276}{5}$(100-x)+160(万元).
(1)若不进行开发,求5年所获利润的最大值是多少?
(2)若按规划实施,求5年所获利润(扣除修路费用)的最大值是多少?

查看答案和解析>>

同步练习册答案