精英家教网 > 初中数学 > 题目详情
(7分)如图,D是△ABC的边AB上一点,DFAC于点EDE=FEFCAB
求证:AD=CF
AD=CF,证明略。

三角形全等条件中必须是三个元素,并且一定有一组对应边相等,可根据AAS判定△ADE≌△CFE,即证AD=CF.
解:AD=CF.
∵AB∥FC,
∴∠A=∠ECF,∠ADE=∠CFE.
∵DE=FE,
∴△ADE≌△CFE.
∴AD=CF.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题



如图所示几何体的俯视图是(   ).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(2011贵州六盘水,25,16分)如图10所示,Rt△ABC是一张放在平面直角坐标系中的纸片,点C与原点O重合,点A在x轴的正半轴上,点B在y轴的正半轴上,已知OA=3,OB=4。将纸片的直角部分翻折,使点C落在AB边上,记为D点,AE为折痕,E在y轴上。
(1)在图10所示的直角坐标系中,求E点的坐标及AE的长。
(2)线段AD上有一动点P(不与A、D重合)自A点沿AD方向以每秒1个单位长度向D点作匀速运动,设运动时间为t秒(0<t<3),过P点作PM∥DE交AE于M点,过点M作MN∥AD交DE于N点,求四边形PMND的面积S与时间t之间的函数关系式,当t取何值时,S有最大值?最大值是多少?
(3)当t(0<t<3)为何值时,A、D、M三点构成等腰三角形?并求出点M的坐标。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(本题满分13分)如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.

⑴ 求证:△AMB≌△ENB;
⑵ ①当M点在何处时,AM+CM的值最小;
②当M点在何处时,AM+BM+CM的值最小,并说明理由;
⑶ 当AM+BM+CM的最小值为时,求正方形的边长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知一个几何体的三种视图如右图所示,则这个几何体是
A.圆柱
B.圆锥
C.球体
D.正方体

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(本题满分12分)如图,过A(8,0)、B(0,)两点的直线与直线交于点C.平行于轴的直线从原点O出发,以每秒1个单位长度的速度沿轴向右平移,到C点时停止;分别交线段BC、OC于点D、E,以DE为边向左侧作等边△DEF,设△DEF与△BCO重叠部分的面积为S(平方单位),直线的运动时间为t(秒).
(1)直接写出C点坐标和t的取值范围;  
(2)求S与t的函数关系式;
(3)设直线轴交于点P,是否存在这样的点P,使得以P、O、F为顶点的三角形为等腰三角形,若存在,请直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,它是一个正方体的表面展开图,也就是说,如图形状的方格式纸片可以折成一个正方体,所折成的正方体应是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

将一个正方体展开图画上一些图案(如图),如果将这个图形折叠起来围成一个正方体,应该得到下图中的哪一个呢?为什么?请大家先想一想,再回答这个问题.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列四个平面图形中,不能折叠成无盖的长方体盒子的是(  )
A.B.
C.D.

查看答案和解析>>

同步练习册答案