(本题满分9分)
“知识改变命运,科技繁荣祖国”.我市中小学每年都要举办一届科技比赛.下图为
我市某校2011年参加科技比赛(包括电子百拼、航模、机器人、建模四个类别)的参赛人数统计图:
(1)该校参加机器人、建模比赛的人数分别是 人和 人;
(2)该校参加科技比赛的总人数是 人,电子百拼所在扇形的圆心角的度数是 °,并把条形统计图补充完整;
(3)从全市中小学参加科技比赛选手中随机抽取80人,其中有32人获奖. 2011年我市中小学参加科技比赛人数共有2485人,请你估算2011年参加科技比赛的获奖人数约是多少人?
科目:初中数学 来源: 题型:
(本题满分12分)
已知直线(<0)分别交轴、轴于A、B两点,线段OA上有一动点P由原点O向点A运动,速度为每秒1个单位长度,过点P作轴的垂线交直线AB于点C,设运动时间为秒.
(1)当时,线段OA上另有一动点Q由点A向点O运动,它与点P以相同速度同时出发,当点P到达点A时两点同时停止运动(如图1).
① 直接写出=1秒时C、Q两点的坐标;
② 若以Q、C、A为顶点的三角形与△AOB相似,求的值.
(2)当时,设以C为顶点的抛物线与直线AB的另一交点为D
(如图2),① 求CD的长;
② 设△COD的OC边上的高为,当为何值时,的值最大?
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源:2011-2012学年陕西省兴平市九年级上学期期末练习数学卷 题型:解答题
(本题满分12分)
已知菱形ABCD的边长为1.∠ADC=60°,等边△AEF两边分别交边DC、CB于点E、F。
1.(1)特殊发现:如图1,若点E、F分别是边DC、CB的中点.求证:菱形ABCD对角线AC、BD交点O即为等边△AEF的外心;
2.(2)若点E、F始终分别在边DC、CB上移动.记等边△AEF的外心为点P.
①猜想验证:如图2.猜想△AEF的外心P落在哪一直线上,并加以证明;
②拓展运用:如图3,当△AEF面积最小时,过点P任作一直线分别交边DA于点M,交边DC的延长线于点N,试判断是否为定值.若是.请求出该定值;若不是.请说明理由。
查看答案和解析>>
科目:初中数学 来源:2011-2012学年苏州市区九年级上学期期末考试数学卷 题型:填空题
(本题满分8分)已知P(-3,m)和Q(1,m)是抛物线y=2x2+bx+1上的两点.
1.(1)求b的值;
2.(2)判断关于x的一元二次方程2x2+bx+1=0是否有实数根,若有,求出它的实数根;若没有,请说明理由;
3. (3)将抛物线y=2x2+bx+1的图象向上平移k(k是正整数)个单位,使平移后的图象与x轴无交点,求k的最小值.
查看答案和解析>>
科目:初中数学 来源:2011-2012年江苏省扬州市九年级第一学期期末考试数学卷 题型:解答题
(本题满分10分)已知a、b满足
1.(1)求a、b的值;
2.(2)求二次函数图象与x轴交点坐标;
3.(3)写出(2)中,当y>0时,x的取值范围。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com