12£®ÔÚËÄÕűàºÅΪA£¬B£¬C£¬DµÄ¿¨Æ¬£¨³ý±àºÅÍ⣬ÆäÓàÍêÈ«Ïàͬ£©µÄÕýÃæ·Ö±ðдÉÏÈçͼËùʾµÄÕýÕûÊýºó£¬±³ÃæÏòÉÏ£¬Ï´Ôȷźã®
£¨1£©ÎÒÃÇÖªµÀ£¬Âú×ãa2+b2=c2µÄÈý¸öÕýÕûÊýa£¬b£¬c³ÉΪ¹´¹ÉÊý£¬¼Î¼Î´ÓÖÐËæ»ú³éÈ¡Ò»ÕÅ£¬Çó³éµ½µÄ¿¨Æ¬ÉϵÄÊýÊǹ´¹ÉÊýµÄ¸ÅÂÊP1£»
£¨2£©ç÷ç÷´ÓÖÐËæ»ú³éÈ¡Ò»ÕÅ£¨²»·Å»Ø£©£¬ÔÙ´ÓʣϵĿ¨Æ¬ÖÐËæ»ú³éÈ¡Ò»ÕÅ£¨¿¨Æ¬ÓÃA£¬B£¬C£¬D±íʾ£©£®ÇëÓÃÁбí»ò»­Ê÷ÐÎͼµÄ·½·¨Çó³éµ½µÄÁ½ÕÅ¿¨Æ¬ÉϵÄÊý¶¼Êǹ´¹ÉÊýµÄ¸ÅÂÊP2£¬²¢Ö¸³öËýÓë¼Î¼Î³éµ½¹´¹ÉÊýµÄ¿ÉÄÜÐÔÒ»ÑùÂð£¿

·ÖÎö £¨1£©¸ù¾Ý¸ÅÂʹ«Ê½Çó½â¿ÉµÃ£»
£¨2£©ÀûÓÃÊ÷״ͼչʾ12ÖֵȿÉÄܵĽá¹ûÊý£¬¸ù¾Ý¹´¹ÉÊý¿ÉÅж¨Ö»ÓÐA¿¨Æ¬ÉϵÄÈý¸öÊý²»Êǹ´¹ÉÊý£¬Ôò¿É´Ó12ÖֵȿÉÄܵĽá¹ûÊýÖÐÕÒ³ö³éµ½µÄÁ½ÕÅ¿¨Æ¬ÉϵÄÊý¶¼Êǹ´¹ÉÊýµÄ½á¹ûÊý£¬È»ºó¸ù¾Ý¸ÅÂʹ«Ê½Çó½â£®

½â´ð ½â£º£¨1£©¼Î¼ÎËæ»ú³éÈ¡Ò»ÕÅ¿¨Æ¬¹²³öÏÖ4ÖֵȿÉÄܽá¹û£¬ÆäÖг鵽µÄ¿¨Æ¬ÉϵÄÊýÊǹ´¹ÉÊýµÄ½á¹ûÓÐ3ÖÖ£¬
ËùÒԼμγéÈ¡Ò»ÕÅ¿¨Æ¬ÉϵÄÊýÊǹ´¹ÉÊýµÄ¸ÅÂÊP1=$\frac{3}{4}$£»

£¨2£©ÁÐ±í·¨£º

ABCD
A£¨A£¬B£©£¨A£¬C£©£¨A£¬D£©
B£¨B£¬A£©£¨B£¬C£©£¨B£¬D£©
C£¨C£¬A£©£¨C£¬B£©£¨C£¬D£©
D£¨D£¬A£©£¨D£¬B£©£¨D£¬C£©
ÓÉÁбí¿ÉÖª£¬Á½´Î³éÈ¡¿¨Æ¬µÄËùÓпÉÄܳöÏֵĽá¹ûÓÐ12ÖÖ£¬
ÆäÖг鵽µÄÁ½ÕÅ¿¨Æ¬ÉϵÄÊý¶¼Êǹ´¹ÉÊýµÄÓÐ6ÖÖ£¬
¡àP2=$\frac{6}{12}$=$\frac{1}{2}$£¬
¡ßP1=$\frac{3}{4}$£¬P2=$\frac{1}{2}$£¬P1¡ÙP2
¡àä¿ä¿Óë¼Î¼Î³éµ½¹´¹ÉÊýµÄ¿ÉÄÜÐÔ²»Ò»Ñù£®

µãÆÀ ±¾Ì⿼²éÁËÁÐ±í·¨ÓëÊ÷״ͼ·¨£ºÀûÓÃÁÐ±í·¨ºÍÊ÷״ͼ·¨Õ¹Ê¾ËùÓпÉÄܵĽá¹ûÇó³ön£¬ÔÙ´ÓÖÐÑ¡³ö·ûºÏʼþA»òBµÄ½á¹ûÊýÄ¿m£¬Çó³ö¸ÅÂÊ£®Ò²¿¼²éÁ˹´¹ÉÊý£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®Èçͼ£¬·´±ÈÀýº¯Êýy=$\frac{8}{x}$µÄͼÏó¾­¹ýÖ±½ÇÈý½ÇÐÎOABµÄ¶¥µãA£¬DΪб±ßOAµÄÖе㣬Ôò¹ýµãDµÄ·´±ÈÀýº¯ÊýµÄ½âÎöʽΪy=$\frac{2}{x}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Èçͼ£¬ÔÚRt¡÷ABCÖУ¬¡ÏACB=90¡ã£¬¡ÏBACµÄ½Çƽ·ÖÏß½»BCÓÚµãO£¬OC=2£¬ÒÔµãOΪԲÐÄOCΪ°ë¾¶×÷Ô²£®
£¨1£©ÇóÖ¤£ºABΪ¡ÑOµÄÇÐÏߣ»              
£¨2£©Èç¹ûtan¡ÏBAO=$\frac{1}{3}$£¬ÇócosBµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖª$\left\{\begin{array}{l}{4x-3y-6z=0}\\{x+2y-7z=0}\end{array}\right.$£¬Çó$\frac{x-y+z}{x+y+z}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®¶ÔÓÚÕûÊýa£¬b£¬c£¬d£¬¶¨Òå$|\begin{array}{l}{a}&{b}\\{d}&{c}\end{array}|$=ac-bd£¬ÒÑÖª1£¼$|\begin{array}{l}{1}&{b}\\{d}&{4}\end{array}|$£¼3£¬Ôòb+dµÄֵΪ3»ò-3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®´Ó-1£¬0£¬1£¬3£¬4Îå¸öÊý×ÖÖУ¬Ëæ»ú³éÈ¡Ò»¸öÊý£¬¼ÇΪa£®ÄÇô£¬Ê¹Ò»´Îº¯Êýy=-3x+a²»¾­¹ýÈýÏóÏ޵ĸÅÂÊÊÇ$\frac{4}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®Èçͼ£¬AÊǰ뾶Ϊ2µÄ¡ÑOÍâµÄÒ»µã£¬OA=4£¬ABÇСÑOÓÚµãB£¬ÏÒBC¡ÎOA£¬Á¬½ÓAC£¬ÔòͼÖÐÒõÓ°²¿·ÖµÄÃæ»ýΪ$\frac{2}{3}$¦Ð£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®»¯¼ò$\frac{{x}^{2}+2x+1}{x}•\frac{x}{x+1}$µÄ½á¹ûΪx+1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®Ò»Ôª¶þ´Î·½³Ìx2+2x-1=0µÄ¸ùµÄÅбðʽ¡÷£¾0£®£¨Ìî¡°£¾¡±¡¢¡°=¡±»ò¡°£¼¡±£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸