精英家教网 > 初中数学 > 题目详情

【题目】如图,矩形ABCD中,AB=8,AD=5,点EDC边上一个动点,把△ADE沿AE折叠,点D的对应点D落在矩形ABCD的对称轴上时,DE的长为____________.

【答案】

【解析】分析:过点D′MNAB于点N,MNCD于点M,由矩形有两条对称轴可知要分两种情况考虑,根据对称轴的性质以及折叠的特性可找出各边的关系,在直角EMD′AND′中,利用勾股定理可得出关于DM长度的一元二次方程,解方程即可得出结论.

详解:过点D′MNAB于点N,MNCD于点M,如图1、所示.

DE=a,则D′E=a.

∵矩形ABCD有两条对称轴,

∴分两种情况考虑:

①当DM=CM时,

AN=DM=CD=AB=4,AD=AD′=5,

由勾股定理可知:

ND′=

MD′=MN-ND′=AD-ND′=2,EM=DM-DE=4-a,

ED′2=EM2+MD′2,即a2=(4-a)2+4,

解得:a=

②当MD′=ND′时,

MD′=ND′=MN=AD=

由勾股定理可知:

AN=

EM=DM-DE=AN-DE=-a,

ED′2=EM2+MD′2,即a2=(a)2+()2

解得:a=

综上知:DE=

故答案为:..

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在边长为1个单位长度的小正方形组成的网格中.

(1)把△ABC进行平移,得到△A′B′C′,使点AA′对应,请在网格中画出△A′B′C′;

(2)线段AA′与线段CC′的位置关系是:   ;(填平行相交”)

(3)求出△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,动点P从点A出发沿AD方向向点D以1cm/s的速度运动,动点Q从点C开始沿着CB方向向点B以3cm/s的速度运动.点P、Q分别从点A和点C同时出发,当其中一点到达端点时,另一点随之停止运动.

(1)经过多长时间,四边形PQCD是平行四边形?

(2)经过多长时间,四边形PQBA是矩形?

(3)经过多长时间,当PQ不平行于CD时,有PQ=CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AD=4,∠CAB=30°,点P是线段AC上的动点,点Q是线段CD上的动点,则AQ+QP的最小值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一次函数y=kx-5的图象经过点A(2,-1).

(1)求k的值;

(2)画出这个函数的图象;

(3)若将此函数的图象向上平移m个单位后与坐标轴围成的三角形的面积为1,请直接写出m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,AB=10,BC=13,CD=12,AD=5,AD⊥CD,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算下列各式

(1)﹣(﹣5)﹣(+7)

(2)|﹣5﹣8|+24÷(﹣3)

(3)﹣0.25÷(﹣×(1﹣

(4)36×

(5)1÷[﹣(﹣1+14

(6)23﹣(1﹣0.5)××[2﹣(﹣3)2]

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,反比例函数y=(k<0)的图象与矩形ABCD的边相交于E、F两点,且BE=2AE,E(﹣1,2).
(1)求反比例函数的解析式;
(2)连接EF,求△BEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店销售A型和B型两种型号的电脑,销售一台A型电脑可获利120元,销售一台B型电脑可获利140元.该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的3倍.设购进A型电脑x台,这100台电脑的销售总利润为y元.

(1)求yx的关系式;

(2)该商店购进A型、B型电脑各多少台,才能使销售利润最大?

(3)若限定商店最多购进A型电脑60台,则这100台电脑的销售总利润能否为13600元?若能,请求出此时该商店购进A型电脑的台数;若不能,请求出这100台电脑销售总利润的范围.

查看答案和解析>>

同步练习册答案