分析 原式各项计算得到结果;
(1)$\sqrt{a^2}$不一定等于a,$\sqrt{a^2}$=|a|;
(2)原式利用得出规律计算即可得到结果.
解答 解:$\sqrt{4^2}$=4,$\sqrt{{{0.8}^2}}$=0.8,$\sqrt{0^2}$=0,$\sqrt{{{({-3})}^2}}$=3,$\sqrt{{{({-\frac{2}{3}})}^2}}$=$\frac{2}{3}$,(1)$\sqrt{a^2}$不一定等于a;
其中的规律是:当a≥0时,$\sqrt{a^2}=a$;当a<0时,$\sqrt{a^2}=-a$;
(2)$\sqrt{{{({π-3.15})}^2}}$=3.15-π.
故答案为:4;0.8;0;3;$\frac{2}{3}$.
点评 此题考查了二次根式的性质与化简,熟练掌握二次根式的性质是解本题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 3$\sqrt{3}$-$\sqrt{3}$=3 | B. | $\sqrt{8}$×$\sqrt{2}$=$\sqrt{8×2}$ | C. | $\frac{3}{2}$$\sqrt{3}$×4$\sqrt{3}$=6$\sqrt{3}$ | D. | 2$\sqrt{15}$+2$\sqrt{3}$=$\sqrt{5}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $y=-\frac{{\sqrt{3}}}{4}{x^2}+\sqrt{3}$ | B. | $y=-\frac{{\sqrt{3}}}{2}{x^2}+2\sqrt{3}$ | C. | $y=-\frac{{\sqrt{3}}}{2}{x^2}+2\sqrt{3}x$ | D. | $y=-\frac{{\sqrt{3}}}{4}{x^2}+\sqrt{3}x$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com