已知Rt△ABC中,∠ACB=90°,CA=CB,有一个圆心角为45°,半径长等于CA的扇形CEF绕点C旋转,直线CE、CF分别与直线AB交于点M、N.
(1)如图①,当AM=BN时,将△ACM沿CM折叠,点A落在弧EF的中点P处,再将△BCN沿CN折叠,点B也恰好落在点P处,此时,PM=AM,PN=BN,△PMN的形状是________等腰直角三角形.线段AM、BN、MN之间的数量关系是________MN);
(2)如图②,当扇形CEF绕点C在∠ACB内部旋转时,线段MN、AM、BN之间的数量关系是________AM2+BN2=MN2.试证明你的猜想;
(3)当扇形CEF绕点C旋转至图③的位置时,线段MN、AM、BN之间的数量关系是________AM2+BN2=MN2.(不要求证明)
解:(1)根据折叠的性质知:△CAM≌△CPM,△CNB≌△CNP.∴AM=PM,∠A=∠CPM,PN=NB,∠B=∠CPN.∴∠MPN=∠A+∠B=90°,PM=PN=AM=BN. 故△PMN是等腰直角三角形,AM2+BN2=MN2(或AM=BN=MN). (2)AM2+BN2=MN2. 证明:如图,将△ACM沿CM折叠,得△DCM,连DN, 则△ACM≌△DCM,∴CD=CA,DM=AM,∠DCM=∠ACM. 同理可知∠DCN=∠BCN,△DCN≌△BCN,DN=BN, 而∠MDC=∠A=45°,∠CDN=∠B=45°,∴∠MDN=90°, ∴DM2+DN2=MN2,故AM2+BN2=MN2. (3)AM2+BN2=MN2;解法同(2). |
科目:初中数学 来源: 题型:
A、
| ||
B、24π | ||
C、
| ||
D、12π |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com