【题目】如图1,在平面直角坐标系中,抛物线 y=x2﹣x﹣与x轴交于A、B、两点(点A在点B的左侧),与y轴交于点C.
(1)判断△ABC形状,并说明理由.
(2)在抛物线第四象限上有一点,它关于x轴的对称点记为点P,点M是直线BC上的一动点,当△PBC的面积最大时,求PM+MC的最小值;
(3)如图2,点K为抛物线的顶点,点D在抛物线对称轴上且纵坐标为,对称轴右侧的抛物线上有一动点E,过点E作EH∥CK,交对称轴于点H,延长HE至点F,使得EF=,在平面内找一点Q,使得以点F、H、D、Q为顶点的四边形是轴对称图形,且过点Q的对角线所在的直线 是对称轴,请问是否存在这样的点Q,若存在请直接写出点E的横坐标,若不存在,请说明理由.
【答案】(1)结论:△ABC是直角三角形(2)(3)存在.满足条件的点E的横坐标为或或或
【解析】试题分析:(1)由△AOC∽△COB,推出∠ACO=∠OBC,由∠OBC+∠OCB=90°,推出∠ACO+∠BCO=90°,推出∠ACB=90°,得出结论;
(2)如图1中,设第四象限抛物线上一点N(m, x2﹣x﹣),点N关于x轴的对称点P(m,-x2+x+),作过B、C分别作y轴、x轴的平行线交于点G,连接PG,可得S△PBC=S△PCG+S△PBG﹣S△BCG,由此可得△PBC面积最大时的点P的坐标,如图2,作ME⊥CG于点M,由△CEM∽△BOC,根据对应边成比例,得出PM+CM=PM+ME,根据垂线段最短可知,当PE⊥CG时,PM+ME最短,由此即可解决;
(3)分三种情况讨论,①如图3,当DH=HF,HQ平分∠DHF时,以嗲F、H、D、Q为顶点的四边形是轴对称图形,且过点Q的对角线所在的直线是对称轴,②如图4,当DH=HF,HQ平分∠DHF时,以点F、H、D、Q为顶点的四边形是轴对称图形,且过点Q的对角线所在的直线是对称轴,③如图5,当DH=DF,DQ平分∠HDF时,以点F、H、D、Q为顶点的四边形是轴对称图形,且过点Q的对角线所在的直线是对称轴,分别求解即可.
试题解析:(1)结论:△ABC是直角三角形.理由如下,
对于抛物线 y=x2﹣x﹣,令y=0得 x2﹣x﹣=0,解得x=﹣或3;令x=0得y=﹣,
∴A(﹣,0),C(0,﹣),B(3,0),
∴OA=,OC=,OB=3,
∴==,∵∠AOC=∠BOC,
∴△AOC∽△COB,
∴∠ACO=∠OBC,
∵∠OBC+∠OCB=90°,
∴∠ACO+∠BCO=90°,
∴∠ACB=90°.
(也可以求出AC、BC、AB利用勾股定理的逆定理证明).
(2)如图1中,设第四象限抛物线上一点N(m, m2﹣m﹣),点N关于x轴的对称点P(m,﹣m2+m+),作过B、C分别作y轴,x轴的平行线交于点G,连接PG.
∵G(3,﹣),
∴S△PBC=S△PCG+S△PBG﹣S△BCG=××(﹣m2+m+2)+×(3﹣m)﹣××=﹣(m﹣)2+.
∵﹣<0,
∴当m=时,△PBC的面积最大,
此时P(,),
如图2中,作ME⊥CG于M.
∵CG∥OB,
∴∠OBC=∠ECM,∵∠BOC=∠CEM,
∴△CEM∽△BOC,
∵OC:OB:BC=1:3:,
∴EM:CE:CM=1:3:,
∴EM=CM,
∴PM+CM=PM+ME,
∴根据垂线段最短可知,当PE⊥CG时,PM+ME最短,
∴PM+MC的最小值为+=.
(3)存在.理由如下,
①如图3中,当DH=HF,HQ平分∠DHF时,以点F、H、D、Q为顶点的四边形是轴对称图形,且过点Q的对角线所在的直线 是对称轴.
作CG⊥HK于G,PH∥x轴,EP⊥PH于P.
∵FH∥CK,K(,﹣),
易知CG:GK:CK=3:4:5,
由△EPH∽△KGC,得PH:PE:EH=3:4:5,设E((n, n2﹣n﹣),则HE=(n﹣),PE=(n﹣),
∵DH=HF,
∴+[﹣n2+n+﹣(n﹣)]=(n﹣)+,
解得n=或(舍弃).
②如图4中,当DH=HF,HQ平分∠DHF时,以点F、H、D、Q为顶点的四边形是轴对称图形,且过点Q的对角线所在的直线 是对称轴.
同法可得[n2﹣n﹣+(n﹣)]﹣=(n﹣)+,
解得n=+或﹣(舍弃).
③如图5中,当DH=DF,DQ平分∠HDF时,以点F、H、D、Q为顶点的四边形是轴对称图形,且过点Q的对角线所在的直线 是对称轴.
设DQ交HF于M.由△DHM∽△CKG,可知HM:DH=4:5,
[(n﹣)+]:[n2﹣n﹣+(n﹣)﹣]=4:5,
解得n=+或=﹣(舍弃),
④如图6中,当FQ平分∠DFH时,满足条件,此时=.
∴5× [n2﹣n﹣﹣+(n﹣)]=4[(n﹣)+],
解得:n=或(舍弃)
综上所,满足条件的点E的横坐标为或+或+或.
科目:初中数学 来源: 题型:
【题目】如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF; ②AB=DE,∠B=∠E,BC=EF;③∠B=∠E,BC=EF,∠C=∠F; ④AB=DE,AC=DF,∠B=∠E.能使△ABC≌△DEF有_____组.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(﹣3,y1)、点B(﹣,y2)、点C(,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有( )
A. 2个 B. 3个 C. 4个 D. 5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平整的地面上,10个完全相同的棱长为2cm的小正方体堆成一个几何体.
(1)画出从左面看和从上面看的形状图.
(2)如果在这个几何体的表面(不含底面)喷上黄色的漆,这个几何体喷漆的面积是多少cm2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点.
(1)已知点M,N是线段AB的勾股分割点,若AM=3,MN=4求BN的长;
(2)已知点C是线段AB上的一定点,其位置如图2所示,请在BC上画一点D,使C,D是线段AB的勾股分割点(要求尺规作图,保留作图痕迹,画出一种情形即可);
(3)如图3,正方形ABCD中,M,N分别在BC,DC上,且BM≠DN,∠MAN=45°,AM,AN分别交BD于E,F.
求证:①E、F是线段BD的勾股分割点;
②△AMN的面积是△AEF面积的两倍.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两名队员参加射击训练,成绩分别绘制成下列两个统计图:
根据以上信息,整理分析数据如下:
平均成绩(环) | 中位数(环) | 众数(环) | 方差 | |
甲 | a | 7 | 7 | 1.2 |
乙 | 7 | b | 8 | c |
(1)写出表格中a,b,c的值;
(2)分别运用表中的四个统计量,简要分析这两名队员的射击成绩,若选派其中一名参赛,你认为应选哪名队员?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF分别交BA的延长线、DC的延长线于点G,H,交BD于点O.
(1)求证:△ABE≌△CDF;
(2)连接DG,若DG=BG,则四边形BEDF是什么特殊四边形?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于正整数,定义,其中表示的首位数字、末位数字的平方和.例如:,.规定,(为正整数),例如,,.按此定义,则由__________,___________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com