精英家教网 > 初中数学 > 题目详情

【题目】如图,AB为⊙O的直径,C上一点,ADOC AD交⊙O于点D,连接ACCD,设∠BOC=x°,∠ACD=y°,则下列结论成立的是(

A. x+y=90 B. 2x+y=90 C. 2x+y=180 D. x=y

【答案】A

【解析】

连接BC,由AB是直径,得∠ACB=90°.根据圆内接四边形性质得∠ACB+ACD+BAD=180°,

由平行线性质得∠BAD=BOC= y°,故x+y+90=180.

连接BC,

因为,AB是直径,

所以,∠ACB=90°.

因为,四边形ADCB是圆的内接四边形,

所以,∠ACB+ACD+BAD=180°,

又因为ADOC,

所以,∠BAD=BOC= x°

所以,x+y+90=180,

所以,x+y=90

故选:A

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,分别以AB、AD为边向外作等边ABE、ADF,延长CBAE于点G,点G在点A、E之间,连接CE、CF,EF,则以下四个结论一定正确的是:①△CDF≌△EBC;②∠CDF=EAF;③△ECF是等边CGAE(  )

A. 只有①② B. 只有①②③ C. 只有③④ D. ①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点C在以AB为直径的⊙O上,AD与过点C的切线垂直,垂足为点D.

(1)求证:AC平分∠DAB;

(2)求证:AC2=ADAB;

(3)若AD=,sinB=,求线段BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】8分)某市在道路改造过程中,需要铺设一条长为1000米的管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.

(1)甲、乙工程队每天各能铺设多少米?

(2)如果要求完成该项工程的工期不超过10天,那么为两工程队分配工程量(以百米为单位)的方案有几种?请你帮助设计出来.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有3个完全相同的小球,把它们分别标号为123,放在一个口袋中,随机地摸出一个小球不放回,再随机地摸出一个小球.

(1) 采用树形图法(或列表法)列出两次摸球出现的所有可能结果;

(2) 求摸出的两个球号码之和等于5的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中秋节是我国传统佳节,圆圆同学带了4个月饼(除馅不同外,其它均相同),其中有两个火腿馅月饼、一个蛋黄馅和一个枣泥馅月饼.

(1)请你根据上述描述,写出一个不可能事件.

(2)圆圆准备从中任意拿出两个送给她的好朋友月月.

①用树状图或列表的方法列出圆圆拿到两个月饼的所有可能结果;

②请你计算圆圆拿到的两个月饼都是火腿馅的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某小区积极创建环保示范社区,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,已知温馨提示牌的单价为每个30元,垃圾箱的单价为每个90元,共需购买温馨提示牌和垃圾箱共100个.

(1)若规定温馨提示牌和垃圾箱的个数之比为1:4,求所需的购买费用;

(2)若该小区至多安放48个温馨提示牌,且费用不超过6300元,请列举所有购买方案,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着生活水平的提高,人们越来越注重营养健康,有一种有机水果在市场上特别受欢迎,某大型超市以10/千克的价格在产地收购了6000千克水果,立即将其冷藏,请根据下列信息解决问题:

①水果的市场价每天每千克上涨0.1元;

②平均每天有10千克的该水果损坏,不能出售;

③每天的冷藏费用为300元;

④该水果最多保存110天;

1)若将这批水果存放天后一次性出售,则天后这批水果的销售单价为 元;

2)将这批水果存放多少天后一次性出售所得利润为9600元?

3)将这批水果存放多少天后一次性出售可获得最大利润?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,AO△ABC的角平分线.以O为圆心,OC为半径作⊙O.

(1)求证:AB⊙O的切线.

2)已知AOO于点E,延长AOO于点DtanD=,求的值.

(3)在(2)的条件下,设⊙O的半径为3,求AB的长.

【答案】(1)证明见解析(2) (3)

【解析】试题分析:(1)过OOF⊥ABF,由角平分线上的点到角两边的距离相等即可得证;(2)连接CE,证明△ACE∽△ADC可得= tanD;(3)先由勾股定理求得AE的长,再证明△B0F∽△BAC,得,设BO="y" BF=z,列二元一次方程组即可解决问题.

试题解析:(1)证明:作OF⊥ABF

∵AO∠BAC的角平分线,∠ACB=90

∴OC=OF

∴AB⊙O的切线

2)连接CE

∵AO∠BAC的角平分线,

∴∠CAE=∠CAD

∵∠ACE所对的弧与∠CDE所对的弧是同弧

∴∠ACE=∠CDE

∴△ACE∽△ADC

= tanD

3)先在△ACO中,设AE=x,

由勾股定理得

(x3)="(2x)" 3 ,解得x="2,"

∵∠BFO=90°=∠ACO

易证Rt△B0F∽Rt△BAC

BO=y BF=z

4z=93y4y=123z

解得z=y=

∴AB=4=

考点:圆的综合题.

型】解答
束】
22

【题目】已知:二次函数的图象与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x2-10x+16=0的两个根,且A点坐标为(-6,0).

(1)求此二次函数的表达式;

(2)若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;

查看答案和解析>>

同步练习册答案