【题目】在生活中,人们经常通过一些标志性建筑确定位置,在数学中往往也是这样.
(1)将正整数如图1的方式进行排列:
小明同学通过仔细观察,发现每一行第一列的数字有一定的规律,所以每一行第一列的数字可以作为标志数,于是他认为第七行第一列的数字是 ,第7行、第5列的数字是 .
(2)方法应用
观察下面一列数:1,﹣2,3,﹣4,5,﹣6,7,…并将这列数按照如图2方式进行排列:
按照上述方式排列下去,
问题1:第10行从左边数第9个数是 ;
问题2:第n行有 个数;(用含n的代数式表示)
问题3:数字2019在第 行,从左边数第 个数.
【答案】(1)49,45;(2)﹣90;2n﹣1;45,83.
【解析】
(1)找出规律第n行第一列的数字为n2,即可得出结果;(2)找出规律每一行最末的数字的绝对值是行数的平分,所有数取绝对值后是连续的正整数,所有数中奇数为正整数、偶数为负整数;问题1:第9行最末的数字的绝对值是81,第10行从左边数第9个数的绝对值是81+9=90,因偶数为负整数,故第10行从左边数第9个数是﹣90;问题2:由每行数的个数为1,3,5,7…;则第n行有2n﹣1个数;问题3:由2019=442+83,即可得出结果.
解:(1)∵每一行第一列的数字为该行的平分,
即第n行第一列的数字为n2,
∴第七行第一列的数字是:72=49,
第5列的数字是:49﹣4=45,
故答案为:49,45;
(2)由题意得:每一行最末的数字的绝对值是行数的平分,所有数取绝对值后是连续的正整数,所有数中奇数为正整数、偶数为负整数,每行数的个数为:1,3,5,7…;
问题1:∵第9行最末的数字的绝对值是81,
∴第10行从左边数第9个数的绝对值是81+9=90,
∵偶数为负整数,
∴第10行从左边数第9个数是﹣90;
问题2:∵每行数的个数为:1,3,5,7…;
∴第n行有2n﹣1个数;
问题3:∵2019=442+83,
∴数字2019在第45行,从左边数第83个数;
故答案为:﹣90;2n﹣1;45,83.
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AD=10,AB=14,点E为DC上一个动点,若将△ADE沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,则点D′到AB的距离为( )
A. 6 B. 6或8 C. 7或8 D. 6或7
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明是个爱动脑筋的同学,在发现教材中的用方框在月历中移动的规律后,突发奇想,将连续的偶数2,4,6,8,…,排成如图:并用一个十字形框架框住其中的五个数,请你仔细观察十字形框架中的数字的规律,并回答下列问题:
(1)十字框中的五个数的和与中间的数16有什么关系?
(2)设中间的数为x,用代数式表示十字框中的五个数的和;
(3)若将十字框上下左右移动,可框住另外的五位数,其它五位数的和能等于2015吗?如能,写出这五位数,如不能,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小王同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t),并绘制了样本的频数分布表和频数分布直方图(如图).
月均用水量(单位:t) | 频数 | 百分比 |
2≤x<3 | 2 | 4% |
3≤x<4 | 12 | 24% |
4≤x<5 |
|
|
5≤x<6 | 10 | 20% |
6≤x<7 |
| 12% |
7≤x<8 | 3 | 6% |
8≤x<9 | 2 | 4% |
(1)请根据题中已有的信息补全频数分布表和频数分布直方图;
(2)如果家庭月均用水量“大于或等于4t且小于7t”为中等用水量家庭,请你估计总体小王所居住的小区中等用水量家庭大约有多少户?
(3)从月均用水量在2≤x<3,8≤x<9这两个范围内的样本家庭中任意抽取2个,请用列举法(画树状图或列表)求抽取出的2个家庭来自不同范围的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列命题中,正确的个数是( )
①若三条线段的比为1:1:,则它们组成一个等腰直角三角形
②当四边形对角线垂直时连四边形各边中点得到一个矩形
③对角线互相垂直的四边形是菱形;
④一条对角线平分一组对角线的平行四边形为菱形;
⑤过矩形对角线交点的一条直线与矩形的一组对边相交,必分矩形为面积相等的两部分.
A. 2个B. 3个C. 4个D. 5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】A,B两地相距80km,甲、乙两人骑车分别从A,B两地同时相向而行,他们都保持匀速行驶.如图,l1,l2分别表示甲、乙两人离B地的距离y(km)与骑车时间x(h)的函数关系.根据图象得出的下列结论,正确的个数是( )
①甲骑车速度为30km/小时,乙的速度为20km/小时;
②l1的函数表达式为y=80﹣30x;
③l2的函数表达式为y=20x;
④小时后两人相遇.
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DE⊥AC于点E.
(1)求证:DE是⊙O的切线.
(2)若∠B=30°,AB=8,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,矩形OABC的顶点A、C均在坐标轴上,且OA=4,OC=3,动点M从点A出发,以每秒1个单位长度的速度,沿AO向终点O移动;动点N从点C出发沿CB向终点B以同样的速度移动,当两个动点运动了x秒(0<x<4)时,过点N作NP⊥BC于点P,连接MP.
(1)直接写出点B的坐标,并求出点P的坐标(用含x的式子表示);
(2)设△OMP的面积为S,求S与x之间的函数表达式;当x为何值时,S有最大值?最大值是多少?
(3)在两个动点运动的过程中,是否存在某一时刻,使△OMP是等腰三角形?若存在,求出x的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com