精英家教网 > 初中数学 > 题目详情
如图所示,若MP和NQ分别垂直平分AB和AC.
(1)若△APQ的周长为12,求BC的长;
(2)∠BAC=105°,求∠PAQ的度数.
分析:(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AP=BP,AQ=CQ,然后求出△APQ的周长=BC,代入数据进行计算即可得解;
(2)根据等边对等角的性质可得∠B=∠BAP,∠C=∠CAQ,根据三角形内角和定理求出∠BAP+∠CAQ,再求解即可.
解答:解:(1)∵MP和NQ分别垂直平分AB和AC,
∴AP=BP,AQ=CQ,
∴△APQ的周长=AP+PQ+AQ=BP+PQ+CQ=BC,
∵△APQ的周长为12,
∴BC=12;

(2)∵AP=BP,AQ=CQ,
∴∠B=∠BAP,∠C=∠CAQ,
∵∠BAC=105°,
∴∠BAP+∠CAQ=∠B+∠C=180°-∠BAC=180°-105°=75°,
∴∠PAQ=∠BAC-(∠BAP+∠CAQ)=105°-75°=30°.
点评:本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等边对等角的性质,三角形的内角和定理,熟记性质是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

先阅读短文,再解答短文后面的问题.
规定了方向的线段称为有向线段.比如,对于线段AB,规定以A为起点,B为终点,便可得到一条从A到B的有向线段.为强调其方向,我们在其终点B处画上箭头(如下图-1).以A为起点,B为终点的有向线段记为
AB
(起点字母A写在前面,终点字母B写在后面).线段AB的长度叫做有向线AB的长度(或模),记为|
AB
|.显然,有向线段
AB
和有向线段
BA
长度相同.方向不同,它们不是同一条有向线段.
对于同一平面内的有向线段,我们可以在该平面建立直角坐标系进行研究(一般情况,直角坐标系的单位长度与有向线段的单位长度相同).比如,以坐标原点O(0,0)为起点,P(3,0)为终点的有向线段
OP
,其方向与x轴正方向相同,长度(或模)是|
OP
|=3.
问题:
(1)在如图所示的平面直角坐标系中画出
OA
有向线段,使得
OA
=3
2
OA
与x轴正半轴的夹角是45°,且与y轴的负半轴的夹角是45°;
(2)若有向线段
OB
的终点B的坐标为(3,
3
),试求出它的模及它与x轴正半轴的夹角;
(3)若点M、A、P在同一直线上,|
MA
|+|
AP
|=|
MP
|
成立吗?试画出示意图加以说明.(示意图可以不画在平面直角坐标系中)
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图所示,∠BAC=105°,若MP和NQ分别垂直平分AB和AC.求∠PAQ的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,∠BAC=105°,若MPNQ分别垂直平分ABAC.求∠PAQ的度数.

 

 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图所示,若MP和NQ分别垂直平分AB和AC.
(1)若△APQ的周长为12,求BC的长;
(2)∠BAC=105°,求∠PAQ的度数.

查看答案和解析>>

同步练习册答案