【题目】在平行四边形ABCD中,对角线AC,BD交于点O,E是BC上一点,连接DE,点F在边CD上,且AF⊥CD交DE于点G,连接CG.已知∠DEC=45°,GC⊥BC.
(1)若∠DCG=30°,CD=4,求AC的长.
(2)求证:AD=CG+DG.
【答案】(1)AC=2;(2)见解析.
【解析】
(1)延长CG交AD于N,连接NF,AC交DE于H,证出∠DGN=∠CGE=45°,GC⊥AD,得出∠GFD=90°=∠GND,证出N、G、F、D四点共圆,由圆周角定理得出∠NFG=∠NDG=45°,由∠ANC=∠AFC=90°,得出A、N、F、C四点共圆,由圆周角定理得出∠ACN=∠NFG=45°,得出△ACN是等腰直角三角形,即可得出答案;
(2)由(1)得:△ADH、△CGH是等腰直角三角形,由等腰直角三角形的性质即可得出结论.
(1)解:延长CG交AD于N,连接NF,AC交DE于H,如图所示:
∵四边形ABCD是平行四边形,
∴AD∥BC,
∵GC⊥BC,∠DEC=45°,
∴∠DGN=∠CGE=45°,GC⊥AD,
∴∠GND=90°,
∴∠NDG=45°,
∵AF⊥CD,
∴∠GFD=90°=∠GND,
∴N、G、F、D四点共圆,
∴∠NFG=∠NDG=45°,
又∵∠ANC=∠AFC=90°,
∴A、N、F、C四点共圆,
∴∠ACN=∠NFG=45°,
∴△ACN是等腰直角三角形,
∴AC=CN=2;
(2)证明:由(1)得:△ADH、△CGH是等腰直角三角形,
∴AD=HD=(HG+DG)=HG+DG=CG+DG.
科目:初中数学 来源: 题型:
【题目】如图,已知∠AOB=90°,∠OAB=30°,反比例函数的图象过点,反比例函数的图象过点A
(1)求和的值.
(2)过点B作BC∥x轴,与双曲线交于点C,求△OAC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为 6 的等边△ABC 中,D 为 AC 上一点,AD=2,P 为 BD 上一点,连接 CP,以 CP 为 边,在 PC 的右侧作等边△CPQ,连接 AQ 交 BD 延长线于 E,当△CPQ 面积最小时,QE=____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,已知∠C=90°,∠B=60°,点D在边BC上,过D作DE⊥AB于E.
(1)连接AD,取AD的中点F,连接CF,EF,判断△CEF的形状,并说明理由
(2)若BD=CD.把△BED绕着点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,点O为∠BAC的平分线上一点,连接OB、OC.
(1)求证:OB=OC;
(2)若OA=OC,∠BAC=46°,求∠OCB的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市正在开展“食品安全城市”创建活动,为了解学生对食品安全知识的了解情况,学校随机抽取了部分学生进行问卷调查,将调查结果按照“A非常了解、B了解、C了解较少、D不了解”四类分别进行统计,并绘制了下列两幅统计图(不完整).请根据图中信息,解答下列问题:
(1)此次共调查了 名学生;
(2)扇形统计图中D所在扇形的圆心角为 ;
(3)将上面的条形统计图补充完整;
(4)若该校共有800名学生,请你估计对食品安全知识“非常了解”的学生的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图1是我校闻澜阁前楼梯原设计稿的侧面图,,,楼梯的坡比为1:,为了增加楼梯的舒适度,将其改造成如图2,测量得,为的中点,过点分别作交的角平分线于点,交于点,其中和为楼梯,为平地,则平地的长度为_________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别为R、S,若AQ=PQ,PR=PS,则结论:①PA平分∠RPS;②AS=AR;③QP∥AR;④△BRP≌△CSP.其中正确的有( )
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com