精英家教网 > 初中数学 > 题目详情
如图所示是由两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:mm),计算出这个立体图形的表面积是(    )mm2
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为a、b,那么(a-b)2的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为a、b,试求:(a+b)2 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成一个大正方形(如图所示).如果大正方形的面积是49,小正方形的面积4,直角三角形的两直角边长分别为a,b,那么下列结论正确的有(  )个.
(1)b-a=2,(2)a2+b2=49,(3)4+2ab=49,(4)a+b=
94

查看答案和解析>>

科目:初中数学 来源:2012-2013学年吉林长春朝阳区八年级上学期期中质量监测数学试卷(带解析) 题型:解答题

感知:利用图形中面积的等量关系可以得到某些数学公式.例如,根据图①甲,我们可以得到两数和的平方公式:,根据图①乙能得到的数学公式是                  

拓展:图②是由四个完全相同的直角三角形拼成的一个大正方形,直角三角形的两直角边长为,斜边长为,利用图②中的面积的等量关系可以得到直角三角形的三边长之间的一个重要公式,这个公式是:               ,这就是著名的勾股定理.请利用图②证明勾股定理.
应用:我国古代数学家赵爽的“勾股圆方图”是由四个完全相同的直角三角形与中间的一个小正方形拼成一个大正方形(如图③所示).如果大正方形的面积是17,小正方形的面积是1,直角三角形的两直角边长分别为,那么的值是         

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为a、b,试求:(a+b)2 的值.

查看答案和解析>>

同步练习册答案