精英家教网 > 初中数学 > 题目详情
(2005•黑龙江)某企业有甲、乙两个长方体的蓄水池,将甲池中的水以每小时6立方米的速度注入乙池,甲、乙两个蓄水池中水的深度y(米)与注水时间x(时)之间的函数图象如图所示,结合图象回答下列问题:
(1)分别求出甲、乙两个蓄水池中水的深度y与注水时间x之间的函数关系式;
(2)求注水多长时间甲、乙两个蓄水池水的深度相同;
(3)求注水多长时间甲、乙两个蓄水池的蓄水量相同.

【答案】分析:(1)分别设y=k1x+b1y乙=k2x+b2,代入已知坐标求出k与b的值;
(2)依题意列出方程组解得x的值即可;
(3)设甲蓄水池的底面积为S1,乙蓄水池的底面积为S2.t小时甲乙两个蓄水池的蓄水量相同,列出等式解答即可.
解答:解:(1)设y=kx+b,
把(0,2)和(3,0)代入得
∴k=-,b=2,
∴y=-x+2,
设y=mx+n,
把(0,1)和(3,4)代入得
∴m=1,n=1,
∴y=x+1;

(2)根据题意,得
解得x=
所以注水小时甲、乙两个蓄水池中水的深度相同;

(3)设甲蓄水池的底面积为S1,乙蓄水池的底面积为S2,t小时甲、乙两个蓄水池的蓄水量相同.
∵甲水深度下降2米,而乙水池深度升高3米,所以甲乙两水池的底面积比是3:2,
∴2S1=3×6,
∴S1=9,
(4-1)S2=3×6,
∴S2=6,
∵S1(-t+2)=S2(t+1)
解得t=1.
∴注水1小时甲、乙两个蓄水池的蓄水量相同(1分)
点评:此题首先要正确理解题意,然后根据题意用待定系数法求出函数解析式,也此题考查一次函数的图象的性质及一次函数的应用.
练习册系列答案
相关习题

科目:初中数学 来源:2005年全国中考数学试题汇编《一次函数》(05)(解析版) 题型:解答题

(2005•黑龙江)如图所示,在平面直角坐标系中,Rt△ABC的斜边AB在x轴上,AB=25,顶点C在y轴的负半轴上,tan∠ACO=,点P在线段OC上,且PO、PC的长(PO<PC)是关于x的方程x2-(2k+4)x+8k=0的两根.
(1)求AC、BC的值;
(2)求P点坐标;
(3)在x轴上是否存在点Q,使以点A、C、P、Q为顶点的四边形是梯形?若存在,请直接写出直线PQ的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2005年全国中考数学试题汇编《一次函数》(05)(解析版) 题型:解答题

(2005•黑龙江)如图,在平面直角坐标系中,Rt△ABC的斜边AB在x轴上,顶点C在y轴的负半轴上,tan∠ABC=,点P在线段OC上,且PO、PC的长(PO<PC)是方程x2-12x+27=0的两根.
(1)求P点坐标;
(2)求AP的长;
(3)在x轴上是否存在点Q,使以点A、C、P、Q为顶点的四边形是梯形?若存在,请直接写出直线PQ的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年中考数学考前10日信息题复习题精选(1)(解析版) 题型:解答题

(2005•黑龙江)如图,在平面直角坐标系中,Rt△ABC的斜边AB在x轴上,顶点C在y轴的负半轴上,tan∠ABC=,点P在线段OC上,且PO、PC的长(PO<PC)是方程x2-12x+27=0的两根.
(1)求P点坐标;
(2)求AP的长;
(3)在x轴上是否存在点Q,使以点A、C、P、Q为顶点的四边形是梯形?若存在,请直接写出直线PQ的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2005年黑龙江省中考数学试卷(课标卷)(解析版) 题型:填空题

(2005•黑龙江)已知抛物线y=ax2+bx+c经过点(1,2)与(-1,4),则a+c的值是   

查看答案和解析>>

科目:初中数学 来源:2005年黑龙江省中考数学试卷(大纲卷)(解析版) 题型:解答题

(2005•黑龙江)如图所示,在平面直角坐标系中,Rt△ABC的斜边AB在x轴上,AB=25,顶点C在y轴的负半轴上,tan∠ACO=,点P在线段OC上,且PO、PC的长(PO<PC)是关于x的方程x2-(2k+4)x+8k=0的两根.
(1)求AC、BC的值;
(2)求P点坐标;
(3)在x轴上是否存在点Q,使以点A、C、P、Q为顶点的四边形是梯形?若存在,请直接写出直线PQ的解析式;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案