【题目】如图,是的直径,,,以为边作圆的内接正多边形,则这个正多边形是( )
A. 正七边形 B. 正八边形
C. 正六边形 D. 正十边形
【答案】C
【解析】
根据圆周角定理求得∠POQ=100°,由等腰三角形的性质得出∠OPQ=∠OQP,再由外角的性质得出∠A+∠APO=∠POM=20°+40°=60°,即可得出△POM是等边三角形,再由正六边形的性质得出答案.
连接QO,PO,如图所示,
∵QO=PO,
∴∠OPQ=∠OQP,
∵∠PMQ=50°,
∴∠POQ=100°,
∴∠OPQ+∠OQP=180°-100°=80°,
∴∠OPQ=∠OQP=40°,
∴∠A+∠APO=∠POM=20°+40°=60°,
∵PO=OM,
∴△POM是等边三角形,
∴PM=OP=OM,
∴以PM为边作圆的内接正多边形,则这个正多边形是正六边形.
故选C.
科目:初中数学 来源: 题型:
【题目】如图,在一次数学活动课上,小明用18个棱长为1的正方体积木搭成一个几何体,然后他请小亮用其他棱长为1的正方体积木在旁边再搭一个几何体,使小亮所搭几何体恰好和小明所搭几何体拼成一个无空隙的大长方体(不改变小明所搭几何体的形状).请从下面的A、B两题中任选一题作答,我选择__________.
A、按照小明的要求搭几何体,小亮至少需要__________个正方体积木.
B、按照小明的要求,小亮所搭几何体的表面积最小为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△PQN中,若∠P=∠Q+α(0°<α≤25°),则称△PQN为“差角三角形”,且∠P是 ∠Q的“差角”.
(1)已知△ABC是等边三角形,判断△ABC是否为“差角三角形”,并说明理由;
(2)在△ABC中,∠C=90°,50°≤∠B≤70°,判断△ABC是否为“差角三角形”,若是,请写出所有的“差角”并说明理由;若不是,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①是一个长为2a,宽为2b的长方形,沿图中的虚线剪开分成四个大小相等的长方形然后按照图②所示拼成一个正方形.
(1)观察图②,请写出三个代数式(a+b)2,(a﹣b)2,ab之间的一个等量关系: ;
(2)根据上述(1)中得到的等量关系,解决下列问题:已知x+y=6,xy=5,求x﹣y的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】北京时间2015年7月31日,国际奥委会主席巴赫宣布:中国北京获得2022年第24届冬季奥林匹克运动会举办权.北京也创造历史,成为第一个既举办过夏奥会又举办冬奥会的城市,张家口也成为本届冬奥会的协办城市.近期,新建北京至张家口铁路可行性研究报告已经获得国家发改委批复,同意新建北京至张家口铁路,铁路全长约180千米.按照设计,京张高铁列车的平均行驶速度是普通快车的1.5倍,用时比普通快车用时少了20分钟,求高铁列车的平均行驶速度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某海域有、、三艘船正在捕鱼作业,船突然出现故障,向、两船发出紧急求救信号,此时船位于船的北偏西方向,距船海里的海域,船位于船的北偏东方向,同时又位于船的北偏东方向.
(1)求的度数;
船以每小时海里的速度前去救援,问多长时间能到出事地点.(结果精确到小时).(参考数据:,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一次函数y=kx+4的图象经过点(﹣3,﹣2).
(1)求这个一次函数的表达式;
(2)画出此一次函数的图象,并求它的截距;
(3)判断点(3,5)是否在此函数的图象上.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,直线AB分别与x轴、y轴交于A、B两点,OC平分∠AOB交AB于点C,点D为线段AB上一点,过点D作DE//OC交y轴于点E,已知AO=m,BO=n,且m、n满足n2-12+36+|n-2m|=0.
(1)求A、B两点的坐标?
(2)若点D为AB中点,求OE的长?
(3)如图2,若点P(x,-2x+6)为直线AB在x轴下方的一点,点E是y轴的正半轴上一动点,以E为直角顶点作等腰直角△PEF,使点F在第一象限,且F点的横、纵坐标始终相等,求点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com