精英家教网 > 初中数学 > 题目详情
16.如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF等于(  )
A.12.5°B.15°C.20°D.22.5°

分析 根据平行四边形的性质和圆的半径相等得到△AOB为等边三角形,根据等腰三角形的三线合一得到∠BOF=∠AOF=30°,根据圆周角定理计算即可.

解答 解:连接OB,
∵四边形ABCO是平行四边形,
∴OC=AB,又OA=OB=OC,
∴OA=OB=AB,
∴△AOB为等边三角形,
∵OF⊥OC,OC∥AB,
∴OF⊥AB,
∴∠BOF=∠AOF=30°,
由圆周角定理得∠BAF=$\frac{1}{2}$∠BOF=15°,
故选:B.

点评 本题考查的是圆周角定理、平行四边形的性质定理、等边三角形的性质的综合运用,掌握同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半、等腰三角形的三线合一是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

6.要使式子$\sqrt{2x+1}$有意义,字母x的取值范围是x≥-$\frac{1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.若多项式m2-2m的值为2,则多项式2m2-4m-1的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.如图,CF是△ABC的外角∠ACM的平分线,且CF∥AB,∠ACF=70°,则∠B的度数为(  )
A.55°B.60°C.70°D.75°

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.关于数据:25,26,23,27,26,23,20.下列说法正确的是(  )
A.中位数是27B.众数是23和26C.极差是6D.平均数是24.5

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图,面积为6的平行四边形纸片ABCD中,AB=3,∠BAD=45°,按下列步骤进行裁剪和拼图.

第一步:如图①,将平行四边形纸片沿对角线BD剪开,得到△ABD和△BCD纸片,再将△ABD纸片沿AE剪开(E为BD上任意一点),得到△ABE和△ADE纸片;
第二步:如图②,将△ABE纸片平移至△DCF处,将△ADE纸片平移至△BCG处;
第三步:如图③,将△DCF纸片翻转过来使其背面朝上置于△PQM处(边PQ与DC重合,△PQM和△DCF在DC同侧),将△BCG纸片翻转过来使其背面朝上置于△PRN处,(边PR与BC重合,△PRN和△BCG在BC同侧).
则由纸片拼成的五边形PMQRN中,对角线MN长度的最小值为$\frac{6\sqrt{10}}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,为了测量出楼房AC的高度,从距离楼底C处60$\sqrt{3}$米的点D(点D与楼底C在同一水平面上)出发,沿斜面坡度为i=1:$\sqrt{3}$的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53°,求楼房AC的高度(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈$\frac{4}{3}$,计算结果用根号表示,不取近似值).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx经过两点A(-1,1),B(2,2).过点B作BC∥x轴,交抛物线于点C,交y轴于点D.
(1)求此抛物线对应的函数表达式及点C的坐标;
(2)若抛物线上存在点M,使得△BCM的面积为$\frac{7}{2}$,求出点M的坐标;
(3)连接OA、OB、OC、AC,在坐标平面内,求使得△AOC与△OBN相似(边OA与边OB对应)的点N的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.若将点A(1,3)向左平移2个单位,再向下平移4个单位得到点B,则点B的坐标为(  )
A.(-2,-1)B.(-1,0)C.(-1,-1)D.(-2,0)

查看答案和解析>>

同步练习册答案