精英家教网 > 初中数学 > 题目详情
精英家教网已知一元二次方程-x2+bx+c=0的两个实数根是m,4,其中0<m<4.
(1)求b、c的值(用含m的代数式表示);
(2)设抛物线y=-x2+bx+c与x轴交于A、B两点,与y轴交于点C.若点D的坐标为(0,-2),且AD•BD=10,求抛物线的解析式及点C的坐标;
(3)在(2)中所得的抛物线上是否存在一点P,使得PC=PD?若存在,求出P点的坐标;若不存在,请说明理由.
分析:(1)已知了方程的两根,用韦达定理即可求出b、c的值.
(2)已知了D点的坐标即可求出OD的长,也就能求出AD、BD的长,然后根据AD•BD=10可得出m的值.进而可求出抛物线的解析式.根据抛物线的解析式即可得出其与y轴的交点.
(3)如果PC=DP,那么P点必在线段CD的垂直平分线上,设这条垂直平分线为l,那么P点必为直线l与抛物线的交点,由此可求出P点的坐标.
解答:解:(1)一元二次方程-x2+bx+c=0的两个实数根是m,4;
∴m+4=b,4m=-c,
∴b=m+4,c=-4m.

(2)由(1)知抛物线y=-x2+(m+4)x-4m与x轴两个交点的坐标为(m,0)(4,0);
∵AD•BD=10,
m2+22
42+22
=10
∵0<m<4,
∴m=1
∴y=-x2+5x-4.
令x=0,
∴y=-4
∴C(0,-4).
∴抛物线的解析式为y=-x2+5x-4,点C的坐标(0,-4).

(3)要使得PC=PD,P点必在CD的垂直平分线l上;
∴直线l是y=-3
y=-3
y=-x2+5x-4

解得
x=
21
2
y=-3

∴抛物线上存在P点,使得PC=PD,且P点坐标为(
5-
21
2
,-3)或(
5+
21
2
,-3).
点评:本题考查了一元二次方程根与系数的关系、二次函数解析式的确定、函数图象交点等知识.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知一元二次方程x2+mx+7=0有一根为7,求这个方程的另一个根和m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知一元二次方程x2-6x-5=0的两根为a、b,则
1
a
+
1
b
的值是
 

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2013•武汉模拟)先阅读并完成第(1)题,再利用其结论解决第(2)题.
(1)已知一元二次方程ax2+bx+c=0(a≠0)的两个实根为x1,x2,则有x1+x2=-
b
a
,x1•x2=
c
a
.这个结论是法国数学家韦达最先发现并证明的,故把它称为“韦达定理”.利用此定理,可以不解方程就得出x1+x2和 x1•x2的值,进而求出相关的代数式的值.
请你证明这个定理.
(2)对于一切不小于2的自然数n,关于x的一元二次方程x2-(n+2)x-2n2=0的两个根记作an,bn(n≥2),
请求出
1
(a2-2)(b2-2)
+
1
(a3-2)(b3-2)
+…+
1
(a2011-2)(b2011-2)
的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•高州市一模)已知一元二次方程(m-1)x2-4mx+4m-2=0有实数根,则m的取值范围是(  )

查看答案和解析>>

同步练习册答案