精英家教网 > 初中数学 > 题目详情
将二次函数y=2x2-8x-5的图象沿它的对称轴所在直线向上平移,得到一条新的抛物线,这条新的抛物线与直线y=kx+1有一个交点为(3,4).
求:(1)新抛物线的解析式及后的值;
(2)新抛物线与y=kx+1的另一个交点的坐标.
(1)y=2x2-8x-5=2(x2-4x)-5=2(x-2)2-13,
设新抛物线为:y=2(x-2)2+m,
由题意知:(3,4)为新抛物线与直线的交点,
则4=2(3-2)2+m,
∴m=2,
又4=3k+1,
∴k=1,
∴新抛物的解析式为:y=2(x-2)2+2;

(2)当直线与新抛物相交时,则2(x-2)2+2=x+1,
∴x1=3,x2=
3
2

∴另一个交点为:(
3
2
5
2
).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

某抛物线型桥拱的最大高度为16米,跨度为40米,图示为它在坐标系中的示意图,则它对应的解析式为:______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

将一个等腰直角三角板放在坐标系中,如图所示,三个顶点坐标分别是A(0,2),B(2,1),C(1,-1),将三角板绕A点顺时针转α°后,使B点与x轴上的点D(-1,0)重合.
(1)写出点E的坐标和α的值(直接写出结果);
(2)求出过B,C,E三点的抛物线的解析式;
(3)在抛物线的对称轴上是否存在一点P,使△PAD是以AD为腰的等腰三角形?若存在,求出P点坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,一次函数y=kx+n的图象与x轴和y轴分别交于点A(6,0)和B(0,2
3
),线段AB的垂直平分线交x轴于点C,交AB于点D.
(1)试确定这个一次函数关系式;
(2)求过A、B、C三点的抛物线的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,平面直角坐标系中,Rt△OAB的OA边在x轴上,OB边在y轴上,且OA=2,AB=
5
,将△OAB绕点O逆时针方向旋转90°后得△OCD,已知点E的坐标是(2、2)
(1)求经过D、C、E点的抛物线的解析式;
(2)点M(x、y)是抛物线上任意点,当0<x<2时,过M作x轴的垂线交直线AC于N,试探究线段MN是否存在最大值,若存在,求出最大值是多少?并求出此时M点的坐标;
(3)P为直线AC上一动点,连接OP,作PF⊥OP交直线AE于F点,是否存在点P,使△PAF是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,五边形ABCDE为一块土地的示意图.四边形AFDE为矩形,AE=130米,ED=100米,BC截∠F交AF、FD分别于点B、C,且BF=FC=10米.
(1)现要在此土地上划出一块矩形土地NPME作为安置区,且点P在线段BC上,若设PM的长为x米,矩形NPME的面积为y平方米,求y与x的函数关系式,并求当x为何值时,安置区的面积y最大,最大面积为多少?
(2)因三峡库区移民的需要,现要在此最大面积的安置区内安置30户移民农户,每户建房占地100平方米,政府给予每户4万元补助,安置区内除建房外的其余部分每平方米政府投入100元作为基础建设费,在五边形ABCDE这块土地上,除安置区外的部分每平方米政府投入200元作为设施施工费.为减轻政府的财政压力,决定鼓励一批非安置户到此安置区内建房,每户建房占地120平方米,但每户非安置户应向政府交纳土地使用费3万元.为保护环境,建房总面积不得超过安置区面积的50%.若除非安置户交纳的土地使用费外,政府另外投入资金150万元,请问能否将这30户移民农户全部安置?并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,已知抛物线y=x2-1与x轴交于A、B两点,与y轴交于点C.
(1)求A、B、C三点的坐标;
(2)过点A作APCB交抛物线于点P,求四边形ACBP的面积;
(3)在x轴上方的抛物线上是否存在一点M,过M作MG⊥x轴于点G,使以A、M、G三点为顶点的三角形与△PCA相似?若存在,请求出M点的坐标;否则,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图①,正方形ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形ABCD的边上,从点A出发沿A?B?C?D匀速运动,同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,设运动的时间为t秒.
(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;
(2)求正方形边长及顶点C的坐标;
(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标;
(4)如果点P、Q保持原速度不变,当点P沿A?B?C?D匀速运动时,OP与PQ能否相等?若能,写出所有符合条件的t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

将现有一根长为1的铁丝.
(1)若把它截成四段然后围成图1所示的“口”形的矩形框,当矩形框的长a与矩形框的宽b满足a=______b时所围成的矩形框面积最大.
(2)若把它截成六段,①可以围成图2所示的“目”形的矩形框,当矩形框的长a与矩形框的宽b满足a=______b时所围成的矩形框面积最大;②可以围成图3所示的“田”形矩形框,当矩形框的长a与矩形框的宽b满足a=______b时所围成的矩形框面积最大.

查看答案和解析>>

同步练习册答案