精英家教网 > 初中数学 > 题目详情

【题目】赵化鑫城某超市购进了一批单价为16元的日用品,销售一段时间后,为获得更多的利润,商场决定提高销售的价格,经试验发现,若按每件20元销售,每月能卖360件;若按每件25元销售,每月能卖210件;若每月的销售件数y(件)与价格x(元/件)满足ykx+b

1)求出kb的值,并指出x的取值范围?

2)为了使每月获得价格利润1920元,商品价格应定为多少元?

3)要使每月利润最大,商品价格又应定为多少?最大利润是多少?

【答案】1k=﹣30b960x取值范围为16≤x≤32;(2)商品的定价为24元;(3)商品价格应定为24元,最大利润是1920元.

【解析】

1)根据待定系数法求解即可;根据单价不低于进价(16元)和销售件数y0可得关于x的不等式组,解不等式组即得x的取值范围;

2)根据每件的利润×销售量=1920,可得关于x的方程,解方程即可求出结果;

3)设每月利润为W元,根据W=每件的利润×销售量可得Wx的函数关系式,然后根据二次函数的性质解答即可.

解:(1)由题意,得:,解得:y=﹣30x+960

y≥030x+960≥0,解得:x≤32

x≥16,∴x的取值范围是:16≤x≤32

答:k=﹣30b960x取值范围为:16≤x≤32

2)由题意,得:(﹣30x+960)(x16)=1920,解得:x1=x2=24

答:商品的定价为24元;

3)设每月利润为W元,由题意,得:W=(﹣30x+960)(x16)=﹣30x242+1920

∵﹣300,∴当x24时,W最大1920

答:商品价格应定为24元,最大利润是1920元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.

(1)写出按上述规定得到所有可能的两位数;

(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】山西物产丰富,在历史传承与现代科技进步中,特色农林牧业、农产品加工业、传统手工业不断发展革新,富有地域特色和品牌的士特产品愈加丰富.根据市场调查,下面五种特产比较受人们的青睐:山西汾酒、山西老陈醋、晋中平遥牛肉、山西沁州黄小米、运城芮城麻片,某学校老师带领学生在集市上随机调查了部分市民对我最喜爱的特产进行投票,将票数进行统计.绘制了如图所示的条形统计图和扇形统计图(均不完整).

请根据图中的信息解答下列问题.

直接写出参与投票的人数,并补全条形统计图;

若该集市上共有人,请估计该集市喜爱运城芮城麻片的人数;

若要从这五种特产中随机抽取出两种特产,请用画树状图或列表的方法,求正好抽到山西汾酒和晋中平遥牛肉的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为响应垃圾分类处理,改善生态环境,某小区将生活垃圾分成三类:厨余垃圾、可回收垃圾和其他垃圾,分别记为abc,并且设置了相应的垃圾箱,“厨余垃圾”箱,“可回收垃圾”箱和“其他垃圾”箱,分别记为ABC

1)小明将垃圾分装在三个袋中,任意投放,用画树状图或列表的方法求把三个袋子都放错位置的概率是多少?

2)某学习小组为了了解居民生活垃圾分类投放的情况,现随机抽取了某天三类垃圾箱中总共100吨的生活垃圾,数据统计如表(单位:吨):

A

B

C

a

40

10

10

b

3

24

3

c

2

2

6

调查发现,在“可回收垃圾”中塑料类垃圾占10%,每回收1吨塑料类垃圾可获得0.7吨二级原料,某城市每天大约产生200吨生活垃圾假设该城市每天处理投放正确的垃圾,每天大概可回收多少吨塑料类垃圾的二级原料?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,菱形OBCD的边OBx轴正半轴上,反比例函数yx0)的图象经过该菱形对角线的交点A,且与边BC交于点F.若点D的坐标为(34),则点F的坐标是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,点ECD边上一点,,连接AEBEBD,且AEBD交于点F.若,则(  )

A.15.5B.16.5C.17.5D.18.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料:各类方程的解法

求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于去分母可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知.

转化的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通过因式分解把它转化为x(x2+x-2)=0,解方程x=0x2+x-2=0,可得方程x3+x2-2x=0的解.

(1)问题:方程x3+x2-2x=0的解是x1=0,x2=x3=

(2)拓展:用转化思想求方程的解;

(3)应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】水城门位于淀浦河和漕港河三叉口,是环城水系公园淀浦河梦蝶岛区域重要的标志性景观.在课外实践活动中,某校九年级数学兴趣小组决定测量该水城门的高.他们的操作方法如下:如图,先在D处测得点A的仰角为20°,再往水城门的方向前进13米至C处,测得点A的仰角为31°(点DCB在一直线上),求该水城门AB的高.(精确到0.1米)

(参考数据:sin20°≈0.34cos20°≈0.94tan20°≈0.36sin31°≈0.52cos31°≈0.86tan31°≈0.60

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,点OBC边上一点,⊙O经过AB两点,与BC边交于点E,点FBE下方半圆弧上一点,FEAC,垂足为D,∠BEF2F

1)求证:AC为⊙O切线.

2)若AB5DF4,求⊙O半径长.

查看答案和解析>>

同步练习册答案