【题目】由于新冠肺炎疫情的影响,市场上防护口罩出现热销,某口罩厂每月固定生产甲、乙两种型号的防护口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表所示:
甲 | 乙 | |
原料成本 | 12 | 8 |
销售单价 | 18 | 12 |
生产提成 | 1 | 0.8 |
(1)若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?
(2)公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过218万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入-投入总成本).
【答案】(1)10,10;(2)10,10,82;
【解析】
(1)根据题意,设甲型号的产品有x万只,则乙型号的产品有(20-x)万只,可以列出相应的一元一次方程,从而可以得到甲、乙两种型号的产品分别是多少万只;
(2)根据题意,可以得到利润和生产甲种产品数量的函数关系式,再根据公司六月份投入总成本(原料总成本+生产提成总额)不超过218万元,可以得到生产甲种产品数量的取值范围,然后根据一次函数的性质,即可得到应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大,并求出最大利润.
解: (1)设甲型号的产品有x万只,则乙型号的产品有(20-x)万只,依题意,得:
18x+12 (20-x) =300,
解得x=10,则20-x=20-10=10,
则甲、乙两种型号的产品分别为10万只,10万只;
(2) 设安排甲型号产品生产y万只,则乙型号产品生产( 20-y)万,所获利润为W万元,
依题意得13y+8.8 (20-y)≤218,解得,
依题意得,利润W= (18-12-1)y+ (12- 8-0.8)(20-y) =1.8y+64,
∵1.8>0,∴W随y的增大而增大,
当y=10时,W最大,最大值为82万元.
答:当安排生产甲种产品10万只、乙种产品10万只时,可使该月公司所获利润最大,最大利润是82万元.
科目:初中数学 来源: 题型:
【题目】如图,一次函数与反比例函数的图象交于A(m,6),B(3,n)两点.
(1)求一次函数的解析式;
(2)求的面积;
(3)根据图象直接写出的x的取值范围
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】反比例函数y=(k为常数,且k≠0)的图象经过点A(1,3)、B(3,m).
(1)求反比例函数的解析式及B点的坐标;
(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程有两个不相等的实数根,,有下列结论:①;②;③三次函数的图象与x轴交点的横坐标分别为a和b,则.其中,正确结论的个数是( )
A.0B.1C.2D.3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在ABC中,∠ACB=45°, D为AC上一点,,连接BD,将ABD沿BD翻折至EBD,点A的对应点E点恰好落在边BC上,延长BC至点F,连接DF,若CF=2,,则DF长为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AD∥BC,点O是对角线AC的中点,过点O作AC的垂线,分别交AD、BC于点E、F,连接AF、CE.试判断四边形AECF的形状,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在□ABCD中,对角线AC、BD相交于点O,点E在BD的延长线上,且△EAC是等边三角形.
(1)求证:四边形ABCD是菱形.
(2)若AC=8,AB=5,求ED的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察下面的点阵图,探究其中的规律.
摆第1个“小屋子”需要5个点,
摆第2个“小屋子”需要 个点,摆第3个“小屋子”需要 个点?
(1)摆第10个这样的“小屋子”需要多少个点?
(2)写出摆第n个这样的“小屋子”需要的总点数,S与n的关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC=5,BC=4,D为边AB上一动点(B点除外),以CD为一边作正方形CDEF,连接BE,则△BDE面积的最大值为______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com