【题目】小明手中有4张背面相同的扑克牌:红桃6、红桃9、黑桃6、黑桃9.先将4张牌背面朝上洗匀,再让小丽抽牌.
(1)小丽从中任意抽取一张扑克牌,抽到黑桃9的概率是__________,抽到偶数的概率是_________;
(2)小丽从中任意抽取两张扑克牌,游戏规则规定:若小丽抽到的两张牌是一红一黑,则小丽胜,若小丽抽到的两张牌是一奇一偶,则小明胜,问该游戏对双方是否公平.(利用树状图或列表说明)
【答案】(1),;(2)见解析
【解析】
(1)利用概率的求解方法即可求得;
(2)因为是两步完成的事件,所以采用列表法即可求得游戏对双方获胜的概率,概率相等则公平,否则不公平.
解:(1)小丽从中任意抽取一张扑克牌,抽到黑桃9的概率是1÷4=
抽到偶数的概率是2÷4=
故答案为:,;
(2)如图,
红桃6 | 红桃9 | 黑桃6 | 黑桃9 | |
红桃6 | 红桃9,红桃6 | 黑桃6,红桃6 | 黑桃9,红桃6 | |
红桃9 | 红桃6,红桃9 | 黑桃6,红桃9 | 黑桃9,红桃9 | |
黑桃6 | 红桃6,黑桃6 | 红桃9,黑桃6 | 黑桃9,黑桃6 | |
黑桃9 | 红桃6,黑桃9 | 红桃9,黑桃9 | 黑桃6,黑桃9 |
共有12种等可能结果,其中抽到的两张牌是一红一黑有8种结果,则小丽获胜的概率是;抽到的两张牌是一奇一偶有8种结果,则小明获胜的概率是,故游戏公平.
科目:初中数学 来源: 题型:
【题目】正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF.连接BF,作EH⊥BF所在直线于点H,连接CH.
(1)如图1,若点E是DC的中点,CH与AB之间的数量关系是 ;
(2)如图2,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由;
(3)如图3,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,函数y=kx+b(k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,则不等式0<kx+b<2x的解集为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=(x+2)(x﹣8)与x轴交于A,B两点,与y轴交于点C,顶点为M,以AB为直径作⊙D.下列结论:①抛物线的对称轴是直线x=3;②⊙D的面积为16π;③抛物线上存在点E,使四边形ACED为平行四边形;④直线CM与⊙D相切.其中正确结论的个数是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线交轴正半轴于点,直线经过抛物线的顶点.已知该抛物线的对称轴为直线,交轴于点.
(1)求的值.
(2)是第一象限内抛物线上的一点,且在对称轴的右侧,连接.设点的横坐标为;
①的面积为,用含的式子表示;
②记.求关于的函数表达式及的范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】表中所列、的7对值是二次函数图象上的点所对应的坐标,其中
… | … | ||||||||
… | 6 | 11 | 11 | 6 | … |
根据表中提供约信息,有以下4个判断:①;②;③当时,的值是;④;其中判断正确的是( )
A.①②③B.①②④C.①③④D.②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】四边形中,,,的顶点在上,交直线于点.
(1)如图1,若,,连接,求的长.
(2)如图2,,当时,求证:是的中点;
(3)如图3,若,对角线,交于点,点关于的对称点为点,连接交于点,连接、、,求的长,请直接写出答案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示抛物线过点,点,且
(1)求抛物线的解析式及其对称轴;
(2)点在直线上的两个动点,且,点在点的上方,求四边形的周长的最小值;
(3)点为抛物线上一点,连接,直线把四边形的面积分为3∶5两部分,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,M、N是对角线AC上的两个动点,P是正方形四边上的任意一点,且,.关于下列结论:①当△PAN是等腰三角形时,P点有6个;②当△PMN是等边三角形时,P点有4个;③DM+DN的最小值等于6.其中,一定正确的结论的序号是_______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com