精英家教网 > 初中数学 > 题目详情
(2012•塘沽区二模)如图,在△ABC中,∠ACB=90°.D是AC的中点,DE⊥AC,AE∥BD,若BC=4,AE=5,则四边形ACBE的周长是
18
18
分析:求出∠CDB=∠DAE,∠C=∠ADE=90°,AD=DC,证△ADE≌△DCB,推出DE=BC,得出平行四边形DEBC,推出BE=DC,根据勾股定理求出DC,即可得出答案.
解答:解:∵AE∥BD,
∴∠CDB=∠DAE,
∵∠ACB=90°,DE⊥AC,
∴∠C=∠ADE=90°,
∴DE∥BC,
∵D为AC中点,
∴AD=CD,
在△ADE和△DCB中
∠ADE=∠C
AD=CD
∠DAE=∠CDB

∴△ADE≌△DCB(ASA),
∴DE=BC=4,
在Rt△DCB中,BC=4,BD=5,由勾股定理得:DC=3,
∴AD=DC=3,
∵ED=BC,DE∥BC,
∴四边形DEBC是平行四边形,
∴CD=BE=3,
∴四边形ACBE的周长是AC+BC+BE+AE=3+3+4+3+5=18,
故答案为:18.
点评:本题考查了矩形的性质,平行四边形的性质和判定,全等三角形的性质和判定,平行线的性质等知识点,关键是求出各个边的长度,本题综合性比较强,有一定的难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•塘沽区二模)已知a,b,c都不为0,且
a+b
c
=
b+c
a
=
a+c
b
=k
,则k的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•塘沽区二模)在直角坐标系中,已知:A(-1,0),B(3,0),C(0,2),以A、B、C、D为顶点的四边形是平行四边形,则D点的坐标为
(2,-2)或(-4,2)或(4,2)
(2,-2)或(-4,2)或(4,2)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•塘沽区二模)如图,在Rt△ABC中,∠ACB=90°,AC=b,BC=a,分别以三角形的三条边为边长作正方形.

(Ⅰ)若三个正方形的位置如图(Ⅰ)所示,其中阴影部分的面积:S1+S2+S3的值为
2a2+2b2
2a2+2b2
(结果用含a,b的式子表示);
(Ⅱ)若三个正方形的位置如图(Ⅱ)所示,其中阴影部分的面积:(S1+S2+S3)-S4的值为
ab
2
ab
2
(结果用含a,b的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•塘沽区二模)已知点P(1,3)在反比例函数y1=
k
x
的图象上,点P关于x轴的对称点P′在一次函数y2=ax+b的图象上.若一次函数y2=ax+b的图象经过点A(-
1
2
,-6).
(Ⅰ)求一次函数和反比例函数的解析式;
(Ⅱ)试判断点A(-
1
2
,-6)是否在反比例函数的图象上,并说明理由;
(Ⅲ)当x<-
1
2
时,试判断y1与y2的大小,并说明理由.

查看答案和解析>>

同步练习册答案