科目:初中数学 来源: 题型:
先做二次函数y=2x2+bx+c关于x轴对称的图象,在绕图像的顶点旋转180度,得到二次函数y=ax2-8x+5,则a、b、c的取之分别是( )
A.2,-8,11 B.2,-8,5 C.-2,-8,11 D.-2,-8,5
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在平面直角坐标系中,O为坐标原点,抛物线y=x2+2x与x轴相交于O、B,顶点为A,连接OA.
(1)A的坐标 ,∠AOB= 。
(2)若将抛物线y=x2+2x向右平移4个单位,再向下平移2个单位,得到抛物线m,其顶点为点C.连接OC和AC,把△AOC沿OA翻折得到四边形ACOC′.试判断其形状,并说明理由;
(3)在(2)的情况下,判断点C′是否在抛物线y=x2+2x上,请说明理由;
(4)若点P为x轴上的一个动点,试探究在抛物线m上是否存在点Q,使以点O、P、C、Q为顶点的四边形是平行四边形,且OC为该四边形的一条边?若存在,请直接写出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+2014的值为( )
A. 2012 B. 2013 C. 2014 D. 2015
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(,)和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.
(1)求抛物线的解析式;
(2)是否存在这样的P点,使线段PC的长有最大值,若存在,求出这个最大值;若不存在,请说明理由;
(3)求△PAC为直角三角形时点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,∠AOB=45°,过OA上到点O的距离分别为1,3,5,7,9,11,…的点作OA的垂线与OB相交,得到并标出一组黑色梯形,它们的面积分别 为S1,S2,S3,S4,….观察图中的规律,第n(n为正整数)个黑色梯形的面积是Sn= .
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在正方形ABCD中,对角线BD的长为.若将BD绕点B旋转后,点D落在BC延长线上的点D′处,点D经过的路径为,则图中阴影部分的面积是( )
| A. | ﹣1 | B. | ﹣ | C. | ﹣ | D. | π﹣2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com