精英家教网 > 初中数学 > 题目详情
在平面直角坐标系中,已知抛物线y=-
1
2
x2+bx+c(b,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,-1),C的坐标为(4,3),直角顶点B在第四象限.
(1)如图,若该抛物线过A,B两点,求该抛物线的函数表达式;
(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与AC交于另一点Q.
(i)若点M在直线AC下方,且为平移前(1)中的抛物线上的点,当以M、P、Q三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M的坐标;
(ii)取BC的中点N,连接NP,BQ.试探究
PQ
NP+BQ
是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.
(1)∵等腰直角三角形ABC的顶点A的坐标为(0,-1),C的坐标为(4,3)
∴点B的坐标为(4,-1).
∵抛物线过A(0,-1),B(4,-1)两点,
c=-1
-
1
2
×16+4b+c=-1
,解得:b=2,c=-1,
∴抛物线的函数表达式为:y=-
1
2
x2+2x-1.

(2)i)∵A(0,-1),C(4,3),
∴直线AC的解析式为:y=x-1.
设平移前抛物线的顶点为P0,则由(1)可得P0的坐标为(2,1),且P0在直线AC上.
∵点P在直线AC上滑动,∴可设P的坐标为(m,m-1),
则平移后抛物线的函数表达式为:y=-
1
2
(x-m)2+m-1.
解方程组:
y=x-1
y=-
1
2
(x-m)2+(m-1)

解得
x1=m
y1=m-1
x2=m-2
y2=m-3

∴P(m,m-1),Q(m-2,m-3).
过点P作PEx轴,过点Q作QFy轴,则
PE=m-(m-2)=2,QF=(m-1)-(m-3)=2.
∴PQ=2
2
=AP0
若以M、P、Q三点为顶点的等腰直角三角形,则可分为以下两种情况:
①当PQ为直角边时:点M到PQ的距离为2
2
(即为PQ的长).
由A(0,-1),B(4,-1),P0(2,1)可知,
△ABP0为等腰直角三角形,且BP0⊥AC,BP0=2
2

如答图1,过点B作直线l1AC,交抛物线y=-
1
2
x2+2x-1于点M,则M为符合条件的点.
∴可设直线l1的解析式为:y=x+b1
∵B(4,-1),∴-1=4+b1,解得b1=-5,
∴直线l1的解析式为:y=x-5.
解方程组
y=x-5
y=-
1
2
x2+2x-1
,得:
x1=4
y1=-1
x2=-2
y2=-7

∴M1(4,-1),M2(-2,-7).

②当PQ为斜边时:MP=MQ=2,可求得点M到PQ的距离为
2

如答图2,取AB的中点F,则点F的坐标为(2,-1).
由A(0,-1),F(2,-1),P0(2,1)可知:
△AFP0为等腰直角三角形,且点F到直线AC的距离为
2

过点F作直线l2AC,交抛物线y=-
1
2
x2+2x-1于点M,则M为符合条件的点.
∴可设直线l2的解析式为:y=x+b2
∵F(2,-1),∴-1=2+b2,解得b2=-3,
∴直线l2的解析式为:y=x-3.
解方程组
y=x-3
y=-
1
2
x2+2x-1
,得:
x1=1+
5
y1=-2+
5
x2=1-
5
y2=-2-
5

∴M3(1+
5
,-2+
5
),M4(1-
5
,-2-
5
).
综上所述,所有符合条件的点M的坐标为:
M1(4,-1),M2(-2,-7),M3(1+
5
,-2+
5
),M4(1-
5
,-2-
5
).

ii)
PQ
NP+BQ
存在最大值.理由如下:
由i)知PQ=2
2
为定值,则当NP+BQ取最小值时,
PQ
NP+BQ
有最大值.

如答图2,取点B关于AC的对称点B′,易得点B′的坐标为(0,3),BQ=B′Q.
连接QF,FN,QB′,易得FNPQ,且FN=PQ,
∴四边形PQFN为平行四边形.
∴NP=FQ.
∴NP+BQ=FQ+B′Q≥FB′=
22+42
=2
5

∴当B′、Q、F三点共线时,NP+BQ最小,最小值为2
5

PQ
NP+BQ
的最大值为
2
2
2
5
=
10
5
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图,二次函数y=-x2-2x的图象与x轴交于点A、O,在抛物线上有一点P,满足S△AOP=3,则点P的坐标是(  )
A.(-3,-3)B.(1,-3)
C.(-3,-3)或(-3,1)D.(-3,-3)或(1,-3)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,抛物线c1经过A,B,C三点,顶点为D,且与x轴的另一个交点为E.
(1)求抛物线c1解析式;
(2)求四边形ABDE的面积;
(3)△AOB与△BDE是否相似,如果相似,请予以证明;如果不相似,请说明理由;
(4)设抛物线c1的对称轴与x轴交于点F,另一条抛物线c2经过点E(抛物线c2与抛物线c1不重合),且顶点为M(a,b),对称轴与x轴相交于点G,且以M,G,E为顶点的三角形与以D,E,F为顶点的三角形全等,求a,b的值.(只需写出结果,不必写出解答过程)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=
1
2
x2+bx+c的图象经过点A(c,-2),,求证:这个二次函数图象的对称轴是x=3.
题目中的矩形框部分是一段墨水污染了无法辨认的文字.
(1)根据已知和结论中现有的信息,你能否求出题中的二次函数解析式?若能,请写出求解过程;若不能,请说明理由;
(2)请你根据已有的信息,在原题中的矩形框中,填加一个适当的条件,把原题补充完整.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

求过(-1,0),(3,0),(1,-5)三点的抛物线的解析式,并画出该抛物线.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

一名学生推铅球,铅球行进高度y(m)与水平距离x(m)之间的函数关系为y=-
1
12
x2+
2
3
x+
5
3

(1)画出函数的图象.
(2)观察图象,指出铅球推出的距离.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某种产品的年产量不超过1000吨,该产品的年产量(单位:吨)与费用(单位:万元)之间函数的图象是顶点在原点的抛物线的一部分(如图1);该产品的年销售量(单位:吨)与销售单价(单位:万元/吨)之间函数的图象是线段(如图2),若生产出的产品都能在当年销售完,则年产量是多少吨时,所获毛利润最大,最大利润是多少(毛利润=销售额-费用).

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,等腰直角三角形ABC的斜边AB所在的直线上有E,F两点,且∠E+∠F=45°,AE=3,设AB=x,BF=y,则y与x的函数关系式为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某水果批发商场销售一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下.若每千克涨价1元,日销售量将减少20千克.
(1)现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?
(2)每千克水果涨价多少元时,商场每天获得的利润最大?获得的最大利润是多少元?

查看答案和解析>>

同步练习册答案