精英家教网 > 初中数学 > 题目详情

【题目】如图1所示,已知函数y= (x0)图像上一点PPA⊥x轴于点Aa0),点B坐标为(0b(b>0) .动点My轴正半轴上点B上方的点.动点N在射线AP上,过点BAB的垂线,交射线AP于点D,交直线MN于点Q.连接AQ,取AQ的中点C

(1)如图2,连接BP,求△PAB的面积;

(2)当点Q在线段BD上时, 若四边形BQNC是菱形,面积为2,求此时P点的坐标.

(3)(2)的条件下,在平面直角坐标系中是否存在点S,使得以点DQNS为顶点的四边形为平行四边

形,如果存在,请直接写出所有的点S的坐标;如果不存在,请说明理由.

【答案】(1)3(2)(3,2)(3)(14)(1,0)(5,4)

【解析】试题分析:(1)、连接OP,根据三角形的面积计算法则进行求解;(2)、根据四边形BQNC是菱形得出BQ=BC=NQ∠BQC=∠NQC,根据AB⊥BQCAQ的中点,得出BC=CQ=AQ∠BQC=60°∠BAQ=30°,从而说明△ABQ△ANQ全等,得出∠BAQ=∠NAQ=30°∠BAO=30°,设CQ=BQ=x,根据菱形的面积求出x的值,即BQ的长度,根据Rt△AQB的勾股定理求出OA的长度,根据反比例函数的性质得出点P的坐标.

试题解析:(1)、连接OPSPAB=SPAO=xy=×6=3

(2)四边形BQNC是菱形,∴BQ=BC=NQ∠BQC=∠NQC

∵AB⊥BQCAQ的中点,∴BC=CQ=AQ∴∠BQC=60°∠BAQ=30°

△ABQ△ANQ∴△ABQ≌△ANQ ∴∠BAQ=∠NAQ=30°∴∠BAO=30°

∵S菱形BQNC==×CQ×BN,设CQ=BQ=x,则BN=2×=x∴x=2∴BQ=2

Rt△AQB中,∠BAQ=30°∴AB=BQ=2∵∠BAO=30°∴OA=AB=3

∵P点在函数y=的图象上,∴P点坐标为(32);

(3)·

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】分解因式:
(1)﹣2a2+4a﹣2
(2)3x﹣12x3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】正十二边形的每一个内角的度数为( )
A.120°
B.135°
C.150°
D.1080°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得ABC,即如图,我们将这种变换记为[θ,n].

(1)、如图,对ABC作变换[50°]得ABC,则SABC:SABC= ;直线BC与直线BC所夹的锐角为 度;

(2)、如图ABC中,BAC=30°ACB=90°,对ABC 作变换[θ,n]得AB'C',使点B、C、C在同一直线上,且四边形ABB'C'为矩形,求θ和n的值;

(3)、如图ABC中,AB=AC,BAC=36°,BC=l,对ABC作变换[θ,n]得ABC,使点B、C、B在同一直线上,且四边形ABB'C'为平行四边形,求θ和n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.

(1)、求证:DEAG;

(2)、如图2,正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°α<360°),得到正方形OEFG

在旋转过程中,当OAG是直角时,求α的度数;

若正方形ABCD的边长为2,在旋转过程中,求AF长的最大值和此时α的度数,直接写出结果不必说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一次函数y=(2m﹣6)x+5中,y随x的增大而减小,则m的取值范围是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,某超市从一楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MNPQ,C是MN上处在自动扶梯顶端B点正上方的一点,BCMN,在自动扶梯底端A处测得C点的仰角为42°,求二楼的层高BC约为多少米?( sin42°≈0.7,tan42°≈0.9)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】宜兴紧靠太湖,所产百合有太湖人参之美誉,今年百合上市后,甲、乙两超市分别用12000元以相同的进价购进质量相同的百合,甲超市销售方案是:将百合按分类包装销售,其中挑出优质的百合400千克,以进价的2倍价格销售,剩下的百合以高于进价10%销售.乙超市的销售方案是:不将百合分类,直接包装销售,价格按甲超市分类销售的两种百合单价和的一半定价.若两超市将百合全部售完,其中甲超市获利8400元(其它成本不计).问:

(1)百合进价为每千克多少元?

(2)乙超市获利多少元?并比较哪种销售方式更合算.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果一条抛物线的形状与y=﹣2x2+2的形状相同,且顶点坐标是(4,﹣2),则它的解析式是( )
A.y=2(x﹣4)2﹣2
B.y=﹣2(x﹣4)2﹣2
C.y=﹣2(x﹣4)2+2
D.y=﹣2(x+4)2﹣2

查看答案和解析>>

同步练习册答案