【题目】某体育用品商店购进乒乓球拍和羽毛球拍进行销售,已知羽毛球拍比乒乓球拍每副进价高20元,用10000元购进羽毛球拍与用8000元购进乒乓球拍的数量相等.
(1)求每副乒乓球拍、羽毛球拍的进价各是多少元?
(2)该体育用品商店计划用不超过8840元购进乒乓球拍、羽毛球拍共100副进行销售,且乒乓球拍的进货量不超过60副,请求出该商店有几种进货方式?
【答案】(1)每副乒乓球拍、羽毛球拍进价分别为80元、100元;(2)共有3种进货方式,详见解析.
【解析】
(1)可设购买1副乒乓球拍需x元,根据用10000元购进羽毛球拍与用8000元购进乒乓球拍的数量相等,列出分式方程,解方程检验即可.
(2)可设购买了乒乓球拍y副,根据该体育用品商店计划用不超过8840元购进乒乓球拍、羽毛球拍共100副,列出不等式求解,再根据乒乓球拍的进货量不超过60副取公共部分的整数,可知共有3种.
(1)设每副乒乓球拍进价为x元,由题意得:
解得:,
经检验是原方程的解,且符合题意,
此时.
答:每副乒乓球拍、羽毛球拍进价分别为80元、100元.
(2)设购进乒乓球拍y副,由题意得:
解得:,
因为所以,
所以.
故共有3种进货方式:
①购买58副乒乓球拍,42副羽毛球拍;
②购买59副乒乓球拍,41副羽毛球拍;
③购买60副乒乓球拍,40副羽毛球拍.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠B>90°,CD为∠ACB的角平分线,在AC边上取点E,使DE=DB,且∠AED>90°.若∠A=α,∠ACB=β,则( )
A.∠AED=180°﹣α﹣βB.∠AED=180°﹣α﹣β
C.∠AED=90°﹣α+βD.∠AED=90°+α+β
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一条公路上顺次有、、三地,甲、乙两车同时从地出发,分别匀速前柱地、地,甲车到达地停留一段时间后原速原路返回,乙车到达地后立即原速原路返回(掉头时间忽略不计),乙车比甲车早1小时返回地,甲、乙两车各自行驶的路程(千米)与时间(时)(从两车出发时开始计时)之间的变化情况如图所示.
(1)在这个变化过程中,自变量是______,因变量是______.
(2)甲车到达地停留的时长为______小时,乙车从出发到返回地共用了______小时.
(3)甲车的速度是______千米/时,乙车的速度是______千米/时.
(4)、两地相距______千米,甲车返回地途中与之间的关系式是______(不必写出自变量取值范围).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平行四边形ABCD中,AB=8cm,AD=12cm,点P在AD 边上以每秒1cm的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B四点组成平行四边形的次数有( )
A. 4次 B. 3次 C. 2次 D. 1次
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】基本图形:在RT△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE.
探索:(1)连接EC,如图①,试探索线段BC,CD,CE之间满足的等量关系,并证明结论;
(2)连接DE,如图②,试探索线段DE,BD,CD之间满足的等量关系,并证明结论;
联想:(3)如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°,若BD=7,CD=2,则AD的长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图1所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的序号是___.①当x=3时,EC<EM;②当y=9时,EC>EM③当x增大时,ECCF的值增大;④当y增大时,BEDF的值不变。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某汽车专卖店经销某种型号的汽车.已知该型号汽车的进价为万元/辆,经销一段时间后发现:当该型号汽车售价定为万元/辆时,平均每周售出辆;售价每降低万元,平均每周多售出辆.
(1)当售价为万元/辆时,平均每周的销售利润为___________万元;
(2)若该店计划平均每周的销售利润是万元,为了尽快减少库存,求每辆汽车的售价.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com