精英家教网 > 初中数学 > 题目详情

【题目】如图1,已知线段AB、CD相交于点O,连接AC、BD,则我们把形如这样的图形称为“8字型”.

(1)求证:∠A+∠C=∠B+D;

(2)如图2,若∠CAB和∠BDC的平分线APDP相交于点P,且与CD、AB分别相交于点M、N.

以线段AC为边的“8字型”有   个,以点O为交点的“8字型”有   

若∠B=100°,∠C=120°,求∠P的度数;

若角平分线中角的关系改为“∠CAP=∠CAB,∠CDP=∠CDB”,试探究∠P∠B、∠C之间存在的数量关系,并证明理由.

【答案】(1)证明见解析;(2)3, 4;∠P=110°;3∠P=∠B+2∠C,理由见解析.

【解析】

(1)由三角形内角和得到∠A+∠C=180°﹣∠AOC,∠B+∠D=180°﹣∠BOD,由对顶角相等,得到∠AOC=∠BOD,因而∠A+∠C=∠B+∠D;

(2)①以线段AC为边的“8字形”有3个,以O为交点的“8字形”有4个;

根据(1)的结论M为交点“8字型中,∠P+∠CDP=∠C+∠CAP,N为交点“8字型中,∠P+∠BAP=∠B+∠BDP,两等式相加得到2∠P+BAP+CDP=B+C+CAP+BDP,APDP是角平分线,得到∠BAP=∠CAP,∠CDP=∠BDP,从而P=(B+C),然后将∠B=100,∠C=120代入计算即可;

③与②的证明方法一样得到3∠P=∠B+2∠C.

(1)在图1中,有∠A+∠C=180°﹣∠AOC,∠B+∠D=180°﹣∠BOD,

∵∠AOC=∠BOD,

∴∠A+∠C=∠B+∠D;

(2)解:以线段AC为边的“8字型”有3个:

以点O为交点的“8字型”有4个:

M为交点“8字型”中,有∠P+∠CDP=∠C+∠CAP,

N为交点“8字型”中,有∠P+∠BAP=∠B+∠BDP

∴2∠P+∠BAP+∠CDP=∠B+∠C+∠CAP+∠BDP,

∵AP、DP分别平分∠CAB和∠BDC,

∴∠BAP=∠CAP,∠CDP=∠BDP,

∴2∠P=∠B+∠C,

∵∠B=100°,∠C=120°,

∴∠P=(∠B+∠C)=(100°+120°)=110°;

③3∠P=∠B+2∠C,其理由是:

∵∠CAP=∠CAB,∠CDP=∠CDB,

∴∠BAP=∠CAB,∠BDP=∠CDB,

M为交点“8字型”中,有∠P+∠CDP=∠C+∠CAP,

N为交点“8字型”中,有∠P+∠BAP=∠B+∠BDP

∴∠C﹣∠P=∠CDP﹣∠CAP=(∠CDB﹣∠CAB),

∠P﹣∠B=∠BDP﹣∠BAP=(∠CDB﹣∠CAB).

∴2(∠C﹣∠P)=∠P﹣∠B,

∴3∠P=∠B+2∠C.

故答案为:(1)证明见解析;(2)3, 4;∠P=110°;3∠P=∠B+2∠C,理由见解析.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知反比例函数 ,则下列结论不正确的是( )
A.图象必经过点(-1,5)
B.图象的两个分支分布在第二、四象限
C.y随x的增大而增大
D.若x>1,则-5<y<0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?请看以下示例:

例:将化为分数形式,

由于,设

②①,解得,于是得.

同理可得,.

根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示)

(类比应用)

(1)

(2)化为分数形式,写出推导过程;

(迁移提升)

(3) ;(注,

(拓展发现)

(4)若已知,则 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC.则下列结论:①abc<0;② ;③ac-b+1=0;④OA·OB= .其中正确结论的个数是( )

A.4
B.3
C.2
D.1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BD为正方形ABCD的对角线,BE平分∠DBC,交DC与点E,将△BCE绕点C顺时针旋转90°得到△DCF,若CE=1 cm,则BF=cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线l1y1=﹣x+b分别与x轴、y轴交于点A、点B,与直线l2y2x交于点C22).

1)若y1y2,请直接写出x的取值范围;

2)点P在直线l1y1=﹣x+b上,且△OPC的面积为3,求点P的坐标?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一批共享单车需要维修,维修后继续投放骑用,现有甲、乙两人做维修,甲每天维修16辆,乙每天维修的车辆比甲多8辆,甲单独维修完成这批共享单车比乙单独维修完多用20天,公司每天付甲80元维修费,付乙120元维修费.

1)问需要维修的这批共享单车共有多少辆?

2)在维修过程中,公司要派一名人员进行质量监督,公司负担他每天10元补助费,现有三种维修方案:①由甲单独维修;

②由乙单独维修;

③甲、乙合作同时维修,你认为哪种方案最省钱,为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲乙两同学用一副扑克牌中牌面数字分别是3,4,5,6的4张牌做抽数字游戏,游戏规则是:将这4张牌的正面全部朝下,洗匀,从中随机抽取一张,抽得的数作为十位上的数字,抽出的牌不放回,然后将剩下的牌洗匀,再从中随机抽取一张,抽得的数作为个位上的数字,这样就得到一个两位数,若这个两位数小于45,则甲获胜,否则乙获胜.你认为这个游戏公平吗?请利用树状图或列表法说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:P、Q分别是两条线段a,b上任意一点,线段PQ长度的最小值叫做线段a与线段b的距离.已知,O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角坐标系中四点.
(1)根据上述定义,当m=2,n=2时,如图1,线段BC与线段OA的距离为;当m=5,n=2时,如图2,线段BC与线段OA的距离(即线段AB的长)为


(2)如图3,若点B落在圆心为A,半径为2的圆上,线段BC与线段OA的距离记为d,求d关于m的函数解析式.

(3)当m值变化时,动线段BC与线段OA的距离始终为2,线段BC的中点为M,点D(0,2),m≥0,n≥0,作MH⊥x轴,垂足为H,是否存在m值,使以A、M、H为顶点的三角形与△AOD相似?若存在,求出m值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案