精英家教网 > 初中数学 > 题目详情

【题目】农经公司以30元/千克的价格收购一批农产品进行销售,为了得到日销售量p(千克)与销售价格x(元/千克)之间的关系,经过市场调查获得部分数据如下表:

销售价格x(元/千克)

30

35

40

45

50

日销售量p(千克)

600

450

300

150

0


(1)请你根据表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定p与x之间的函数表达式;
(2)农经公司应该如何确定这批农产品的销售价格,才能使日销售利润最大?
(3)若农经公司每销售1千克这种农产品需支出a元(a>0)的相关费用,当40≤x≤45时,农经公司的日获利的最大值为2430元,求a的值.(日获利=日销售利润﹣日支出费用)

【答案】
(1)解:假设p与x成一次函数关系,设函数关系式为p=kx+b,

解得:k=﹣30,b=1500,

∴p=﹣30x+1500,

检验:当x=35,p=450;当x=45,p=4150;当x=50,p=0,符合一次函数解析式,

∴所求的函数关系为p=﹣30x+1500;


(2)解:设日销售利润w=p(x﹣30)=(﹣30x+1500)(x﹣30)

即w=﹣30x2+2400x﹣45000,

∴当x=﹣ =40时,w有最大值3000元,

故这批农产品的销售价格定为40元,才能使日销售利润最大;


(3)解:日获利w=p(x﹣30﹣a)=(﹣30x+1500)(x﹣30﹣a),

即w=﹣30x2+(2400+30a)x﹣(1500a+45000),

对称轴为x=﹣ =40+ a,

①若a>10,则当x=45时,w有最大值,

即w=2250﹣150a<2430(不合题意);

②若a<10,则当x=40+ a时,w有最大值,

将x=40+ a代入,可得w=30( a2﹣10a+100),

当w=2430时,2430=30( a2﹣10a+100),

解得a1=2,a2=38(舍去),

综上所述,a的值为2.


【解析】(1)首先根据表中的数据,可猜想y与x是一次函数关系,任选两点求表达式,再验证猜想的正确性;(2)根据题意列出日销售利润w与销售价格x之间的函数关系式,根据二次函数的性质确定最大值即可;(3)根据题意列出日销售利润w与销售价格x之间的函数关系式,并求得抛物线的对称轴,再分两种情况进行讨论,依据二次函数的性质求得a的值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】中国“蛟龙”号深潜器目前最大深潜极限为7062.68米.如图,某天该深潜器在海面下2000米的A点处作业,测得俯角为30°正前方的海底C点处有黑匣子信号发出.该深潜器受外力作用可继续在同一深度直线航行3000米后,再次在B点处测得俯角为45°正前方的海底C点处有黑匣子信号发出,请通过计算判断“蛟龙”号能否在保证安全的情况下打捞海底黑匣子.(参考数据 ≈1.732)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABCD中,AE平分∠BAD交边BC于E,DF平分∠ADC交边BC于F,若AD=11,EF=5,则AB=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A是直线AM与⊙O的交点,点B在⊙O上,BD⊥AM垂足为D,BD与⊙O交于点C,OC平分∠AOB,∠B=60°.

(1)求证:AM是⊙O的切线;
(2)若DC=2,求图中阴影部分的面积(结果保留π和根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“富春包子”是扬州特色早点,富春茶社为了了解顾客对各种早点的喜爱情况,设计了如右图的调查问卷,对顾客进行了抽样调查.根据统计数据绘制了如下尚不完整的统计图.
根据以上信息,解决下列问题:
(1)条形统计图中“汤包”的人数是 , 扇形统计图中“蟹黄包”部分的圆心角为°;
(2)根据抽样调查结果,请你估计富春茶社1000名顾客中喜欢“汤包”的有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图示二次函数y=ax2+bx+c的对称轴在y轴的右侧,其图象与x轴交于点A(﹣1,0)与点C(x2 , 0),且与y轴交于点B(0,﹣2),小强得到以下结论:①0<a<2;②﹣1<b<0;③c=﹣1;④当|a|=|b|时x2 ﹣1;以上结论中正确结论的序号为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】函数f(x)=ex(﹣x2+2x+a)在区间[a,a+1]上单调递增,则实数a的最大值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用. 设每个房间每天的定价增加x元.求:
(1)房间每天的入住量y(间)关于x(元)的函数关系式;
(2)该宾馆每天的房间收费p(元)关于x(元)的函数关系式;
(3)该宾馆客房部每天的利润w(元)关于x(元)的函数关系式;当每个房间的定价为每天多少元时,w有最大值?最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程2x2+kx﹣1=0 ①若方程有两个相等的实数根,求k的值;
②若方程的一个根是x=﹣1,求另一个根及k的值.

查看答案和解析>>

同步练习册答案