【题目】如图,平面直角坐标系中,直线AB:y= -+b交y轴于点A(0,1),交x轴于点B,直线x=1交AB于点D,交x轴于点E,P是直线x=1上的一动点,且在点D的上方,设P(1,n).
(1)求直线ABd解析式和点B的坐标;
(2)求△ABP的面积(用含n的代数式表示);
(3) 当 =2时,
①求出点P的坐标;②在①的条件下,以PB为边在第一象限作等腰直角△BPC,直接写出点C的坐标.
【答案】(1) y=-x+1, 点B(3,0);(2) n-1;(3)①P(1,2);②(3,4)或(5,2)或(3,2).
【解析】
(1)将点A的坐标代入直线AB的解析式可求得b值,可得AB的解析式,继而令y=0,求得相应的x值即可得点为B的坐标;
(2)过点A作AM⊥PD,垂足为M,求得AM的长,再求得△BPD和△PAD的面积,二者的和即为△ABP的面积;
(3)①当S△ABP=2时,代入①中所得的代数式,求得n值,即可求得点P的坐标;
②分P是直角顶点且BP=PC、B是直角顶点且BP=BC 、C是直角顶点且CP=CB三种情况求点C的坐标即可.
(1)∵y=-x+b经过A(0,1),∴b=1,
∴直线AB的解析式是y=-x+1,
当y=0时,0=-x+1,解得x=3,∴点B(3,0);
(2)过点A作AM⊥PD,垂足为M,则有AM=1,
∵x=1时,y=-x+1=, P在点D的上方,∴PD=n-,
S△APD=PDAM=×1×(n-)=n-,
由点B(3,0),可知点B到直线x=1的距离为2,
即△BDP的边PD上的高长为2,
∴S△BPD=PD×2=n-,
∴S△PAB=S△APD+S△BPD=n-+n-=n-1;
(3)①当S△ABP=2时,n-1=2,解得n=2,∴点P(1,2);
②∵E(1,0),
∴PE=BE=2,
∴∠EPB=∠EBP=45°.
第1种情况,如图1,∠CPB=90°,BP=PC,
过点C作CN⊥直线x=1于点N.
∵∠CPB=90°,∠EPB=45°,
∴∠NPC=∠EPB=45°,
在△CNP与△BEP中,
,
∴△CNP≌△BEP,
∴PN=NC=EB=PE=2,
∴NE=NP+PE=2+2=4,
∴C(3,4);
第2种情况,如图2,∠PBC=90°,BP=BC,
过点C作CF⊥x轴于点F.
∵∠PBC=90°,∠EBP=45°,
∴∠CBF=∠PBE=45°,
在△CBP与△PBE中,
,
∴△CBF≌△PBE.
∴BF=CF=PE=EB=2,
∴OF=OB+BF=3+2=5,
∴C(5,2);
第3种情况,如图3,∠PCB=90°,CP=CB,
∴∠CPB=∠CBP=45°,
∵∠EPB=∠EBP=45°,
∴∠PCB=∠CBE=∠EPC=90°,
∴四边形EBCP为矩形,
∵CP=CB,
∴四边形EBCP为正方形,
∴PC=CB=PE=EB=2,
∴C(3,2);
∴以PB为边在第一象限作等腰直角三角形BPC,点C的坐标是(3,4)或(5,2)或(3,2).
科目:初中数学 来源: 题型:
【题目】小明和小亮用如图所示的两个转盘做“配紫色”游戏,游戏规则是:分别转动两个转盘,若其中一个转盘转出红色,另一个转出蓝色,则可以配成紫色,此时小明得1分,否则小亮得1分.
(1)用画树状图或列表的方法求出小明获胜的概率;
(2)这个游戏对双方公平吗?请说明理由.若不公平,如何修改规则才能使游戏对双方公平?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有理数a、b、c在数轴上对应点的位置如图:① abc<0;② (a-b)(b-c)(c-a)>0;③|a|<1-bc;④|a-b|+|b-c|=|a-c|;以上四个结论正确的有( )个.
A.4B.3C.2D.1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFGH的一边FG在BC上,顶点E、H分别在AB、AC上,已知BC=40cm,AD=30cm.
(1)求证:△AEH∽△ABC;
(2)求这个正方形的边长与面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】股民王晓宇上周五在股市以收盘价(股市收市时的价格)每股24元购买进某公司股票1000股,周六、周日股市不交易,在接下来的一周交易日内,王晓宇记下该股每日收盘价格相比前一天的涨跌情况如下表:(单位:元)
(1)星期三收盘时,每股是多少元?
(2)已知小明父亲买进股票时付了1.5‰的手续费,卖出时需付成交额的1.5‰的手续费和1‰的交易税,如果他在周五收盘前将全部股票卖出,他的收益情况如何?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图①是一个三角形,分别连接这个三角形三边的中点得到图②,再分别连接图②中间小三角形三边的中点,得到图③.
(1)图②有______个三角形;图③有______个三角形;
(2)按上面的方法继续下去,第n个图形中有_________个三角形(用n的代数式表示).
(3)是否存在正整数n,使得第n个图形中存在2019个三角形?如果存在,请求出n的值;如果不存在,请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一次函数 y1=kx+b 与 y2=x+a 的图象如图所示,则下列结论:①k<0;②a<0,b<0;③当 x=3 时,y1=y2;④不等式 kx+b>x+a 的解集是 x<3,其中正确的结论有_______.(只填序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】初二年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初二学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:
(1)在这次评价中,一共抽查了 名学生;
(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为 度;
(3)请将频数分布直方图补充完整;
(4)如果全市有6000名初二学生,那么在试卷评讲课中,“独立思考”的初二学生约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线l1的函数解析式为y=﹣2x+4,且l1与x轴交于点D,直线l2经过点A、B,直线l1、l2交于点C.
(1)求直线l2的函数解析式;
(2)求△ADC的面积;
(3)在直线l2上是否存在点P,使得△ADP面积是△ADC面积的2倍?如果存在,请求出P坐标;如果不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com