精英家教网 > 初中数学 > 题目详情
11.如图,点A,B,C,D在⊙O上,点O在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD=60°.

分析 利用四边形OABC为平行四边形,可得∠AOC=∠B,∠OAB=∠OCB,∠OAB+∠B=180°.利用四边形ABCD是圆的内接四边形,可得∠D+∠B=180°.利用同弧所对的圆周角和圆心角可得∠D=$\frac{1}{2}$∠AOC,求出∠D=60°,进而即可得出.

解答 解:∵四边形OABC为平行四边形,
∴∠AOC=∠B,∠OAB=∠OCB,∠OAB+∠B=180°.
∵四边形ABCD是圆的内接四边形,
∴∠D+∠B=180°.
又∠D=$\frac{1}{2}$∠AOC,
∴3∠D=180°,
解得∠D=60°.
∴∠OAB=∠OCB=180°-∠B=60°.
∴∠OAD+∠OCD=360°-(∠D+∠B+∠OAB+∠OCB)=360°-(60°+120°+60°+60°)=60°.
故答案为:60.

点评 本题考查了平行四边形的性质、圆的内接四边形的性质、同弧所对的圆周角和圆心角的关系,属于基础题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

1.若$\sqrt{5}$=a,$\sqrt{17}$=b,则$\sqrt{0.85}$的值使用a、b可以表示为$\frac{ab}{10}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图,在菱形ABCD中,AB=6,∠DAB=60°,AE分别交BC、BD于点E、F,CE=2,连接CF,以下结论:①△ABF≌△CBF;②点E到AB的距离是2$\sqrt{3}$;③tan∠DCF=$\frac{3\sqrt{3}}{7}$;④△ABF的面积为12$\sqrt{3}$,其中一定成立的是①②③(把所有正确结论的序号都填在横线上)①②③.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如图,在数轴上A,B,C,D四个点中,与表示4-$\sqrt{28}$的点最接近的是(  )
A.点AB.点BC.点CD.点D

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.已知一个多边形的内角和是外角和的3倍,那么这个多边形是八边形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.小明同学需测量一条河流的宽度(河岸两边互相平行).如图,小明同学在河岸一侧选取两个观测点A、B,在河对岸选取观测点C,测得AB=31m,∠CAB=37°,∠CBA=120°.请你根据以上数据,帮助小明计算出这条河的宽度.
(结果精确到0.1,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,$\sqrt{2}$≈1.41,$\sqrt{3}$≈1.73)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图,在△AOB中,∠ABO=90°,OB=4,AB=8,反比例函数y=$\frac{k}{x}$在第一象限内的图象分别交OA,AB于点C和点D,且△BOD的面积S△BOD=4,则点C的坐标为(2,4).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.若正多边形的一个内角等于150°,则这个正多边形的边数是12.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.某学校教学楼从一楼到二楼由两段坡度相等的楼梯CA、AB联通(如图),经测量的这两层楼间的垂直高度BC为5米,∠BAC=70°,试求一楼到二楼的楼梯总长度(精确到0.1米).
(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin70°≈0.94,cos70°≈0.34)

查看答案和解析>>

同步练习册答案