A. | 2015$\sqrt{3}$,2017 | B. | 2016$\sqrt{3}$,2018 | C. | 2017$\sqrt{3}$,2019 | D. | 2017$\sqrt{3}$,2017 |
分析 根据题意得出直线AA1的解析式为:y=$\frac{\sqrt{3}}{3}$x+2,进而得出A,A1,A2,A3坐标,进而得出坐标变化规律,进而得出答案.
解答 解:过B1向x轴作垂线B1C,垂足为C,
由题意可得:A(0,2),AO∥A1B1,∠B1OC=30°,
∴CO=OB1cos30°=$\sqrt{3}$,
∴B1的横坐标为:$\sqrt{3}$,则A1的横坐标为:$\sqrt{3}$,
连接AA1,可知所有三角形顶点都在直线AA1上,
∵点B1,B2,B3,…都在直线y=$\frac{\sqrt{3}}{3}$x上,AO=2,
∴直线AA1的解析式为:y=$\frac{\sqrt{3}}{3}$x+2,
∴y=$\frac{\sqrt{3}}{3}$×$\sqrt{3}$+2=3,
∴A1( $\sqrt{3}$,3),
同理可得出:A2的横坐标为:2 $\sqrt{3}$,
∴y=$\frac{\sqrt{3}}{3}$×2 $\sqrt{3}$+2=4,
∴A2(2 $\sqrt{3}$,4),
∴A3(3 $\sqrt{3}$,5),
…
A2017(2017 $\sqrt{3}$,2019).
故选C.
点评 本题为规律型题目,利用等边三角形和直角三角形的性质求得B1的坐标,从而总结出点的坐标的规律是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 2.5 | D. | 4 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com