分析 (1)先利用一次函数的解析式求出A点和B点坐标,再利用旋转的性质得到∠AOC=∠BOD=90°,OC=OA,OD=OB,则可表示出C点和D点坐标;
(2)设交点式y=a(x+4)(x-2),再把C点坐标代入求出a即可得到抛物线的解析式;
(3)设M(t,-$\frac{1}{2}$t2-t+4),t<0,利用两点间的距离公式得到MA=$\sqrt{(t+4)^{2}+(-\frac{1}{2}{t}^{2}-t+4)^{2}}$,MB=$\sqrt{{t}^{2}+(-\frac{1}{2}{t}^{2}-t+4-2)^{2}}$,则$\sqrt{(t+4)^{2}+(-\frac{1}{2}{t}^{2}-t+4)^{2}}$=$\sqrt{{t}^{2}+(-\frac{1}{2}{t}^{2}-t+4-2)^{2}}$,然后解方程求出t即可得到M点坐标.
解答 解:(1)当y=0时,$\frac{1}{2}$x+2=0,解得x=-4,则A(-4,0),
当x=0时,y=$\frac{1}{2}$x+2=2,则B(0,2),
∵△AOB绕原点顺时针旋转90°得到△COD,
∴∠AOC=∠BOD=90°,OC=OA,OD=OB,
∴C(0,4),D(2,0),
(2)设抛物线的解析式为y=a(x+4)(x-2),
把C(0,4)代入得a•4•(-2)=4,解得a=-$\frac{1}{2}$,
∴抛物线的解析式为y=-$\frac{1}{2}$(x+4)(x-2),即y=-$\frac{1}{2}$x2-x+4;
(3)设M(t,-$\frac{1}{2}$t2-t+4),t<0,
MA=$\sqrt{(t+4)^{2}+(-\frac{1}{2}{t}^{2}-t+4)^{2}}$,MB=$\sqrt{{t}^{2}+(-\frac{1}{2}{t}^{2}-t+4-2)^{2}}$,
而MA=MB,
∴$\sqrt{(t+4)^{2}+(-\frac{1}{2}{t}^{2}-t+4)^{2}}$=$\sqrt{{t}^{2}+(-\frac{1}{2}{t}^{2}-t+4-2)^{2}}$,
整理得t2-2t-14=0,解得t1=1+$\sqrt{15}$(舍去),t2=1-$\sqrt{15}$,
∴M点坐标为(1-$\sqrt{15}$,-5+2$\sqrt{15}$).
点评 本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和旋转的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;会利用两点间的距离公式计算线段的长.
科目:初中数学 来源: 题型:选择题
A. | 石家庄市明天将有10%的地区降水 | B. | 石家庄市明天将有10%的时间降水 | ||
C. | 石家庄市明天降水的可能性较小 | D. | 石家庄明天肯定不降水 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com