精英家教网 > 初中数学 > 题目详情

体育课上,两名同学分别进行了5次立定跳远测试,要判断这5次测试中谁的成绩比较稳定,通常需要比较这两名同学成绩的(  )

    A.                       平均数                        B.                             中位数     C. 众数       D. 方差

练习册系列答案
相关习题

科目:初中数学 来源: 题型:


如图,在平面直角坐标系中,将△ABC绕点P旋转180°,得到△A1B1C1,则点A1,B1,C1的坐标分别为(  )

 

A.

A1(﹣4,﹣6),B1(﹣3,﹣3),C1(﹣5,﹣1)

B.

A1(﹣6,﹣4),B1(﹣3,﹣3),C1(﹣5,﹣1)

 

C.

A1(﹣4,﹣6),B1(﹣3,﹣3),C1(﹣1,﹣5)

D.

A1(﹣6,﹣4),B1(﹣3,﹣3),C1(﹣1,﹣5)

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,由3个大小相同的正方体搭成的几何体,其主视图是(  )

    A.                                                B.                                   C.     D.

查看答案和解析>>

科目:初中数学 来源: 题型:


先化简,再求值:(a+2b)2+(b+a)(b﹣a),其中a=﹣1,b=2.

查看答案和解析>>

科目:初中数学 来源: 题型:


张老师给爱好学习的小军和小俊提出这样一个问题:如图1,在△ABC中,AB=AC,点P为边BC上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.求证:PD+PE=CF.

小军的证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.

小俊的证明思路是:如图2,过点P作PG⊥CF,垂足为G,可以证得:PD=GF,PE=CG,则PD+PE=CF.

【变式探究】如图3,当点P在BC延长线上时,其余条件不变,求证:PD﹣PE=CF;

请运用上述解答中所积累的经验和方法完成下列两题:

【结论运用】如图4,将矩形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=8,CF=3,求PG+PH的值;

【迁移拓展】图5是一个航模的截面示意图.在四边形ABCD中,E为AB边上的一点,ED⊥AD,EC⊥CB,垂足分别为D、C,且AD•CE=DE•BC,AB=2dm,AD=3dm,BD=dm.M、N分别为AE、BE的中点,连接DM、CN,求△DEM与△CEN的周长之和.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,等圆⊙O1和⊙O2相交于A、B两点,⊙O1经过⊙O2的圆心O2,连接AO1并延长交⊙O1于点C,则∠ACO2的度数为(  )

    A.                       60° B.                       45° C.                       30° D.   20°

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,△ABC中,∠A=40°,AB的垂直平分线MN交AC于点D,∠DBC=30°,若AB=m,BC=n,则△DBC的周长为      

查看答案和解析>>

科目:初中数学 来源: 题型:


下列计算正确的是(  )

 

A.

a+2a2=3a3

B.

a3•a2=a6

C.

a6+a2=a3

D.

(ab)3=a3b3

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,过A(1,0)、B(3,0)作x轴的垂线,分别交直线y=4﹣x于C、D两点.抛物线y=ax2+bx+c经过O、C、D三点.

(1)求抛物线的表达式;

(2)点M为直线OD上的一个动点,过M作x轴的垂线交抛物线于点N,问是否存在这样的点M,使得以A、C、M、N为顶点的四边形为平行四边形?若存在,求此时点M的横坐标;若不存在,请说明理由;

(3)若△AOC沿CD方向平移(点C在线段CD上,且不与点D重合),在平移的过程中△AOC与△OBD重叠部分的面积记为S,试求S的最大值.

查看答案和解析>>

同步练习册答案