精英家教网 > 初中数学 > 题目详情
如图,从P点引⊙O的两切线PA、PA、PB,A、B为切点,已知⊙O的半径为2,∠P=60°,则图中阴影部分的面积为   
【答案】分析:如果连接OA、OB、OP,那么阴影部分的面积可以用两个直角三角形的面积和圆心角为120°的扇形的面积差来求得.
解答:解:连接OA,OB,OP,则∠OAP=∠OBP=90°,
∴∠AOB=180°-60°=120°,∠AOP=∠BOP=60°;
由切线长定理知,AP=PB=AOtan60°=2
∴S阴影=S△APO+S△OPB-S扇形OAB
即:S阴影=2××OA•AP-=4-π.
点评:本题考查了切线长定理以及直角三角形、扇形的面积的求法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,从P点引⊙O的两切线PA、PA、PB,A、B为切点,已知⊙O的半径为2,∠P=60°,则图中阴影部分的面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,从P点引⊙O的两条切线PA、PB,A、B为切点,已知⊙O的半径为1,∠P=60°,则图中阴影部分的面积为
 

查看答案和解析>>

科目:初中数学 来源:2009年重庆市中考数学权威预测试卷(一)(解析版) 题型:填空题

如图,从P点引⊙O的两切线PA、PA、PB,A、B为切点,已知⊙O的半径为2,∠P=60°,则图中阴影部分的面积为   

查看答案和解析>>

科目:初中数学 来源:2009年四川省达州市渠县龙凤中学中考数学仿真试卷(解析版) 题型:填空题

(2007•济宁)如图,从P点引⊙O的两切线PA、PA、PB,A、B为切点,已知⊙O的半径为2,∠P=60°,则图中阴影部分的面积为   

查看答案和解析>>

科目:初中数学 来源:2009年山东省日照市中考数学模拟试卷1(丁文斌)(解析版) 题型:填空题

(2007•济宁)如图,从P点引⊙O的两切线PA、PA、PB,A、B为切点,已知⊙O的半径为2,∠P=60°,则图中阴影部分的面积为   

查看答案和解析>>

同步练习册答案