精英家教网 > 初中数学 > 题目详情
如图,在以O为圆心的两个同心圆中,大圆的弦AB与小圆相切于C点,sinA=,OA=10cm,则AB长为        cm.
16.

试题分析:连接OC,由切线的性质可知OC⊥AB,所以三角形AOC是直角三角形,由OA=10cm,易求OC,再根据勾股定理即可求出AC的长,进而求出AB的长.
试题解析:连接OC,

∵大圆的弦AB与小圆相切于C点,
∴OC⊥AB,
∴AC=BC,
∵sinA=,OA=10cm,
∴OC=6cm,
∴AC=cm,
∴AB=2AC=16cm
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知如图平面直角坐标系中,点O是坐标原点,矩形ABCD是顶点坐标分别为A(3,0)、B(3,4)、C(0,4).点D在y轴上,且点D的坐标为(0,﹣5),点P是直线AC上的一动点.
(1)当点P运动到线段AC的中点时,求直线DP的解析式(关系式);
(2)当点P沿直线AC移动时,过点D、P的直线与x轴交于点M.问在x轴的正半轴上是否存在使△DOM与△ABC相似的点M?若存在,请求出点M的坐标;若不存在,请说明理由;
(3)当点P沿直线AC移动时,以点P为圆心、R(R>0)为半径长画圆.得到的圆称为动圆P.若设动圆P的半径长为,过点D作动圆P的两条切线与动圆P分别相切于点E、F.请探求在动圆P中是否存在面积最小的四边形DEPF?若存在,请求出最小面积S的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,点E是上的一点,∠DBC=∠BED.
(1)求证:BC是⊙O的切线;
(2)已知AD=3,CD=2,求BC的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知A、B、C分别是⊙O上的点,∠B=60°,P是直径CD的延长线上的一点,且AP=AC.
(1)求证:AP与⊙O相切;
(2)如果AC=3,求PD的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在数学活动课上,王老师发给每位同学一张半径为6个单位长度的圆形纸板,要求同学们:(1)从带刻度的三角板、量角器和圆规三种作图工具中任意选取作图工具,把圆形纸板分成面积相等的四部分;(2)设计的整个图案是某种对称图形.王老师给出了方案一,请你用所学的知识再设计两种方案,并完成下面的设计报告.
名称
四等分圆的面积
方案
方案一
方案二
方案三
选用的工具
带刻度的三角板
量角器
带刻度的三角板、圆规
 画出示意图

 
 
简述设计方案
作⊙O两条互相垂直的直径AB、CD,将⊙O的面积分成相等的四份.
 
 
指出对称性
既是轴对称图形又是中心对称图形
 
 
 

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

两个圆的半径分别为4cm和3cm,圆心距是6cm,则这两个圆的位置关系是:           

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,点C为⊙O的直径AB上一动点,AB=2,过点C作DE⊥AB交⊙O于点D、E,连结AD,AE. 当点C在AB上运动时,设AC的长为x,△ADE的面积为y,下列图象中,能表示y与x的函数关系的图象大致是(   )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,⊙O与Rt△ABC的斜边AB相切于点D,与直角边AC相交于点E,且DE∥BC.已知AE=2,AC=3,BC=6,则⊙O的半径是

A.3         B.2       C.2       D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,圆锥底面半径OA=10㎝,母线PA=30㎝.由底面周长上一点A出发绕其侧面一周的最短路线长度是多少?

查看答案和解析>>

同步练习册答案