精英家教网 > 初中数学 > 题目详情
2.如图所示,正方形ABCD对角线AC所在直线上有一点O,OA=AC=2,将正方形绕O点顺时针旋转60°,在旋转过程中,正方形扫过的面积是2π+2.

分析 如图,用大扇形的面积减去小扇形的面积再加上正方形ABCD的面积.

解答 解:∵OA=AC=2,
∴AB=BC=CD=AD=$\sqrt{2}$,OC=4,
S阴影=$\frac{60°}{360°}π{(4}^{2}{-2}^{2})$+${(\sqrt{2})}^{2}$=2π+2,
故答案为:2π+2.

点评 此题考查了扇形的面积公式和旋转的性质以及勾股定理,能够把不规则图形的面积转换为规则图形的面积是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

12.在一个凸n边形的纸板上切下一个三角形后,剩下的一个内角和为1080°的多边形,则n的值为(  )
A.7B.8C.9D.以上都有可能

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.解不等式组$\left\{\begin{array}{l}x-3(x-2)≤4\\ \frac{1+2x}{3}>x-1\end{array}\right.$,并把它的解集在数轴上表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.计算-2+(-5)=-7.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,半圆O的直径AB=4,以长为2的弦PQ为直径,向点O方向作半圆M,其中P点在$\widehat{AQ}$上且不与A点重合,但Q点可与B点重合.
发现:$\widehat{AP}$的长与$\widehat{QB}$的长之和为定值l,求l:
思考:点M与AB的最大距离为$\sqrt{3}$,此时点P,A间的距离为2;
点M与AB的最小距离为$\frac{\sqrt{3}}{2}$,此时半圆M的弧与AB所围成的封闭图形面积为$\frac{π}{6}$-$\frac{\sqrt{3}}{4}$;
探究:当半圆M与AB相切时,求$\widehat{AP}$的长.
(注:结果保留π,cos35°=$\frac{\sqrt{6}}{3}$,cos55°=$\frac{\sqrt{3}}{3}$)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.已知△ABC顶点坐标分别是A(0,6),B(-3,-3),C(1,0),将△ABC平移后顶点A的对应点A1的坐标是(4,10),则点B的对应点B1的坐标为(  )
A.(7,1)B.B(1,7)C.(1,1)D.(2,1)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.如图,直线a,b被直线c所截,若a∥b,∠1=110°,则∠2等于(  )
A.70°B.75°C.80°D.85°

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球8个.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.解方程组$\left\{\begin{array}{l}{2x+3y=7①}\\{x-3y=8②}\end{array}\right.$.

查看答案和解析>>

同步练习册答案