精英家教网 > 初中数学 > 题目详情
正方形ABCD,E是BC中点,∠AEF=90°,∠1=∠2
(1)线段AE与EF的数量关系为______
(2)在线段BC上,若E不是BC中点,上述关系是否成立?若成立,加以证明;若不成立,说明理由?
(1)取AB的中点G,
∵正方形ABCD,E是BC中点,
∴AG=BG=BE=EC,
∴△BEG是等腰直角三角形,
∴∠BGE=45°,
∠AGE=180°-45°=135°,
∵∠1=∠2,
∴∠ECF=90°+45°=135°,
∴∠AGE=∠ECF,
∵∠AEF=90°,
∴∠AEB+∠CEF=180°-90°=90°,
又∵∠BAE+∠AEB=180°-90°=90°,
∴∠BAE=∠CEF,
在△AGE和△ECF中,
∠BAE=∠CEF
AG=EC
∠AGE=∠ECF

∴△AGE≌△ECF(ASA),
∴AE=EF;

(2)结论AE=EF仍然成立.
理由如下:在AB上截取BG=BE,
则△BGE是等腰直角三角形,
∴∠BGE=45°,
∠AGE=180°-45°=135°,
∵AG+BG=AB,BE+EC=BC,AB=BC,
∴AG=EC,
∵∠1=∠2,
∴∠ECF=90°+45°=135°,
∴∠AGE=∠ECF,
∵∠AEF=90°,
∴∠AEB+∠CEF=180°-90°=90°,
又∵∠BAE+∠AEB=180°-90°=90°,
∴∠BAE=∠CEF,
在△AGE和△ECF中,
∠BAE=∠CEF
AG=EC
∠AGE=∠ECF

∴△AGE≌△ECF(ASA),
∴AE=EF.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

(1)如图1,正方形ABCD中,E,F,GH分别为四条边上的点,并且AE=BF=CG=DH.求证:四边形EFGH为正方形.
(2)如图2,有一块边长1米的正方形钢板,被裁去长为
1
4
米、宽为
1
6
米的矩形两角,现要将剩余部分重新裁成一正方形,使其四个顶点在原钢板边缘上,且P点在裁下的正方形一边上,问如何剪裁使得该正方形面积最大,最大面积是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在正方形ABCD中,点E是BC边上一点,且BE:EC=2:1,AE与BD交于点F,则△AFD与四边形DEFC的面积之比是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知:如图,在正方形ABCD中,F是AD的中点,BF与AC交于点G,则△BFC与四边形CGFD的面积之比是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图所示,四边形ABCD是正方形,E为BF上一点,四边形AEFC恰是一个菱形,则∠EAB=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

将五个边长都为2cm的正方形按如图所示摆放,点A、B、C、D分别是正方形的中心,则图中四块阴影部分的面积和为______cm2

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知三个边长分别为2、3、5的正方形如图排列,则图中阴影部分面积为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在平面直角坐标系中,边长为1的正方形OA1B1C的对角线A1C和OB1交于点M1,以M1A1为对角线作第二个正方形A2A1B2M1,对角线A1M1和A2B2交于点M2;以M2A1为对角线作第三个正方形A3A1B3M2,对角线A1M2和A3B3交于点M3;…,依此类推,那么M1的坐标为______;这样作的第n个正方形的对角线交点Mn的坐标为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知正方形ABCD,以CD为边作等边△CDE,则∠AED的度数是______.

查看答案和解析>>

同步练习册答案