精英家教网 > 初中数学 > 题目详情
已知梯形ABCD中,AD∥BC,AB=AD(如图所示),∠BAD的平分线AE交BC于点E,连接DE.
(1)在图中,用尺规作∠BAD的平分线AE(保留作图痕迹,不精英家教网写作法),并证明四边形ABED是菱形;
(2)∠ABC=60°,EC=2BE,求证:ED⊥DC.
分析:(1)分别以点B、D为圆心,以大于AB的长度为半径,分别作弧,且两弧交于一点P,连接AP,则AP即为∠BAD的平分线,且AP交BC于点E;
可通过证△BOE≌△BOA,得AO=OE,则AD与BE平行且相等,由此证得四边形ABED是平行四边形,而AB=AD,根据一组邻边相等的平行四边形是菱形,即可证得所求的结论;
(2)已知了EC、BE的比例关系,可用未知数表示出BE、EC的长;过D作DF⊥BC于F,在Rt△DEF中,易知∠DEF=∠ABC=60°,可用DE(即BE)的长表示出EF、DF,进而表示出FC的长;在Rt△CFD中,根据DF、CF的长,可由勾股定理求出CD的长,进而可根据DE、EC、CD的长由勾股定理证得DE⊥DC.
解答:(1)解:作图如图.
证明:在△ABO与△ADO中,
AB=AD
∠BAO=∠DAO
AO=AO

∴△ABO≌△ADO(SAS),
∴BO=OD,
∵AD∥BC,
∴∠OBE=∠ODA,∠OAD=∠OEB,
在△BOE与△DOA中,
∠OEB=∠OAD
∠OBE=∠ODA
BO=OD

∴△BOE≌△DOA(AAS),
∴BE=AD(平行且相等),
∴四边形ABED为平行四边形,另AB=AD,精英家教网
∴四边形ABED为菱形;

(2)证明:设DE=2a,则CE=4a,过点D作DF⊥BC,
∵∠ABC=60°,∴∠DEF=60°,
∴∠EDF=30°,∴EF=
1
2
DE=a,
则DF=
3
a
,CF=CE-EF=4a-a=3a,
CD=
DF2+CF2
=
3a2+9a2
=2
3
a

∴DE=2a,EC=4a,CD=2
3
a
,构成一组勾股数,
∴△EDC为直角三角形,则ED⊥DC.
点评:此题主要考查了梯形的性质、尺规作图-角平分线的作法、菱形的判定和性质、勾股定理的应用等知识.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

7、如图,已知梯形ABCD中,AD∥BC,AB=CD=AD,AC,BD相交于O点,∠BCD=60°,则下列说法错误的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知梯形ABCD中,AD∥BC,∠ABC=60°,BD=2
3
,AE为梯形的高,且BE=1,则AD=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知梯形ABCD中,AD∥CB,E,F分别是BD,AC的中点,BD平分∠ABC.
(1)求证:AE⊥BD;    (2)若AD=4,BC=14,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

24、已知梯形ABCD中,AD∥BC,AB=CD,∠B=45°,它的高为2cm,中位线长为5cm,则上底AD等于
3
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知梯形ABCD中,AD∥BC,∠B=40°,∠C=70°,AD=3,BC=7,则腰AB=
4
4

查看答案和解析>>

同步练习册答案