【题目】在平面直角坐标系xOy中,一次函数的图像与反比例函数的图像相交于A,B两点,与x轴相交于点C,连接OB,且的面积为.
(1)求反比例函数的表达式;
(2)将直线AB向下平移,若平移后的直线与反比例函数的图像只有一个交点,试说明直线AB向下平移了几个单位长度?
【答案】(1) ;(2)或
【解析】
(1)作,先求出点C的坐标,然后根据的面积为,即可求出BF的长,即点B的纵坐标,代入到一次函数解析式中,即可求出点B的坐标,将点B坐标代入反比例函数的解析式中即可求出反比例函数的解析式;
(2)设平移a个单位长度,根据平移规律,平移后的一次函数解析式为:,然后和反比例函数联立,根据题意,联立后的一元二次方程有两个相等的实数根,可得:,从而求出a的值.
解析:(1)作
令,,
∴,即OC=5
∵
∴
∴
∴B点的纵坐标为1
令,,
∴
将B点坐标代入中,得
∴反比例函数表达式:
(2)设平移a个单位长度
则平移后直线解析式为
∵两个图像只有1个交点
∴,
整理,得,此方程有两个相等的实数根
∴
∴
∴,
或
科目:初中数学 来源: 题型:
【题目】如图,在中,点在上,连接,点在上,的延长线交射线于点.
(1)若点是边上的中点,且,求的值.
(2)若点是边上的中点,且,求的值.(用含的代数式表示),试写出解答过程.
(3)探究三:若,且,请直接写出的值(不写解答过程).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,二次函数的图象经过点,且当和时所对应的函数值相等.一次函数与二次函数的图象分别交于, 两点,点在第一象限.
()求二次函数的表达式.
()连接,求的长.
()连接, 是线段得中点,将点绕点旋转得到点,连接, ,判断四边形的性状,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(m为常数且m≠0)的图象在第二象限交于点C,CD⊥x轴,垂足为D,若OB=2OA=3OD=6.
(1)求一次函数与反比例函数的解析式;
(2)求两个函数图象的另一个交点E的坐标;
(3)请观察图象,直接写出不等式kx+b≥的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AC为正方形ABCD的对角线,点P是平面内不与点A,B重合的任意一点,连接AP,将线段AP绕点P顺时针旋转得到线段PE,连接AE,BP,CE.
(1)求证:;
(2)当线段BP与CE相交时,设交点为M,求的值以及的度数;
(3)若正方形ABCD的边长为3,,当点P,C,E在同一直线上时,求线段BP的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有4张分别标有数字2,3,4,6的扑克牌,除正面的数字外,牌的形状、大小完全相同.小红先从口袋中随机摸出一张扑克牌并记下牌上的数字为x;小颖在剩下的3张扑克牌中随机摸出一张扑克牌并记下牌上的数字为y,
(1)事件①:小红摸出标有数字3的牌,事件②:小颖摸出标有数字1的牌,则( )
A.事件①是必然事件,事件②是不可能事件,
B.事件①是随机事件,事件②是不可能事件,
C.事件①是必然事件,事件②是随机事件,
D.事件①是随机事件,事件②是必然事件,
(2)若|x-y|≤2,则说明小红与小颖“心领神会”,请求出她们“心领神会”的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图象与x轴交于A,B两点,与y轴交于点C,对称轴与x轴交于点D,若点P为y轴上的一个动点,连接PD,则的最小值为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,长方形ABCD中,∠DAB=∠B=∠DCB=∠D=90°,AD=BC=6,AB=CD=10.点E为射线DC上的一个动点,把△ADE沿直线AE翻折得△AD′E.
(1)当D′点落在AB边上时,∠DAE= °;
(2)如图2,当E点与C点重合时,D′C与AB交点F,
①求证:AF=FC;②求AF长.
(3)连接D′B,当∠AD′B=90°时,求DE的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com