精英家教网 > 初中数学 > 题目详情
如图,一条直线与反比例函数的图象交于A(1,4)B(4,n)两点,与轴交于D点,AC⊥轴,垂足为C.

(1)如图甲,①求反比例函数的解析式;②求n的值及D点坐标;
(2)如图乙,若点E在线段AD上运动,连结CE,作∠CEF=45°,EF交AC于F点.试说明△CDE∽△EAF;
(1)①,②,D(5,0);(2)要证△CDE∽△EAF,只要证明出△CDE和△EAF的三个内角分别对应相等,即可得证.

试题分析:(1)①根据点A的坐标即可求出反比例函数的解析;②把B点的坐标代入求得的反比例函数的解析式即可求得n的值;利用待定系数法求一次函数的解析式,令一次函数的y=0,即可求得点D的坐标;
(2)要证△CDE∽△EAF,只要证明出△CDE和△EAF的三个内角分别对应相等,即可得证.
(1)①∵点A(1,4)在反比例函数图象上
∴k=4
即反比例函数关系式为
②∵点B(4,n)在反比例函数图象上
∴n=1
设一次函数的解析式为y=mx+b
∵点A(1,4)和B(4,1)在一次函数y=mx+b的图象上

∴一次函数关系式为y=-x+5
令y=0,得x=5
∴D点坐标为D(5,0);
(2)∵A(1,4),D(5,0),AC⊥x轴
∴C(1,0)
∴AC=CD=4,
即∠ADC=∠CAD=45°,
∵∠AEC=∠ECD+∠ADC=∠ECD+45°,
∠AEC=∠AEF+∠FEC=∠AEF+45°,
∴∠ECD=∠AEF,△CDE和△EAF的两角对应相等,
∴△CDE∽△EAF.
点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,一次函数的图像与反比例函数的图像相交于A、B两点,

(1)利用图中条件,求反比例函数和一次函数的解析式;
(2)根据图像回答:当x取何值时
(3)根据图像回答:当x取何值时

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

【童话故事】“龟兔赛跑”:兔子和乌龟同时从起点出发,比赛跑步,领先的兔子看着缓慢爬行的乌龟,骄傲起来,在路边的小树下睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟已先到达终点.
【数学探究】
我们假设乌龟、兔子的速度及赛场均保持不变,小莉用图1刻画了“龟兔赛跑”的故事,其中(分)表示乌龟从起点出发所行的时间,(米)表示兔子所行的路程,(米)表示乌龟所行的路程.

(1)分别求线段所表示的之间的函数关系式;
(2)试解释图中线段的实际意义;
(3)兔子输了比赛,心里很不服气,它们约定再次赛跑,
①如果兔子让乌龟先跑30分钟,它才开始追赶,请在图2中画出兔子所行的路程之间的函数关系的图象,并直接判断谁先到达终点;
②如果兔子让乌龟从路边小树处(兔子第一次睡觉的地方)起跑,它们同时出发,这一次谁先到达终点呢?为什么?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

一次函数,若y随x的增大而增大,则的取值范围是        .

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

我市南山区两村盛产荔枝,甲村有荔枝200吨,乙村有荔枝300吨.现将这些荔枝运到A,B两个冷藏仓库,已知A仓库可储存240吨,B仓库可储存260吨;从甲村运往A、B两处的费用分别为每吨20元和25元,从乙村运往A,B两处的费用分别为每吨15元和18元.设从甲村运往A仓库的荔枝重量为吨,甲、乙两村运往两仓库的荔枝运输费用分别为元和元.
(1)请填写下表,并求出之间的函数关系式;

(2)试讨论甲、乙两村中,哪个村的运费较少;
(3)考虑到乙村的经济承受能力,乙村的荔枝运费不得超过4830元.在这种情况下,请问怎样调运,才能使两村运费之和最小?求出这个最小值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

甲、乙两人沿相同的路线由A到B匀速行进,A、B两地间的路程为16km,他们行进的路程S(km)与甲出发后的时间t(h)之间的函数图象如图所示,则下列判断错误的是()

A.乙比甲晚出发1h                    B.甲比乙晚到B地2 h
C.乙的速度是8km/h                  D.甲的速度是4km/h

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知四条直线y=kx+3,y=1,y=3,x=-1所围成的四边形的面积是8,则k=        .

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角梯形ABCD中,AD//BC,∠A=90°,AB=12,BC=21,AD=16.动点P从点B出发,沿射线BC的方向以每秒2个单位长的速度运动,动点Q同时从点A出发,在线段AD上以每秒1个单位长的速度向点D运动,当动点Q到达点D时另一个动点P也随之停止运动.设运动的时间为t(秒).

(1)设△DPQ的面积为S,求S与t之间的函数关系式及t的取值范围;
(2)当t为何值时,以P、C、D、Q为顶点的四边形是平行四边形?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图1,△OAB是边长为2的等边三角形,OAx轴上,点B在第一象限内;△OCA是一个等腰三角形,OCAC,顶点C在第四象限,∠C=120°.现有两动点PQ分别从AO两点同时出发,点Q以每秒1个单位的速度沿OC向点C运动,点P以每秒3个单位的速度沿AOB运动,当其中一个点到达终点时,另一个点也随即停止.

(1)求在运动过程中形成的△OPQ面积S与运动时间t之间的函数关系,并写出自变量t的取值范围;
(2)在OA上(点OA除外)存在点D,使得△OCD为等腰三角形,请直接写出所有符合条件的点D的坐标;
(3)如图2,现有∠MCN=60°,其两边分别与OBAB交于点MN,连接MN.将∠MCN绕着C点旋转(0°<旋转角<60°),使得MN始终在边OB和边AB上.试判断在这一过程中,△BMN的周长是否发生变化?若没有变化,请求出其周长;若发生变化,请说明理由.

查看答案和解析>>

同步练习册答案