精英家教网 > 初中数学 > 题目详情
17.把几个图形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的式子.
(1)图1是由几个面积不等的小正方形与小长方形拼成的一个边长为a+b+c的正方形,试用不同的方法计算这个正方形的面积,你发现了什么结论?请写出来.
(2)图2是将两个边长分别为a和b的正方形拼在一起,B、C、G三点在同一直线上,连结BD、BF,若两正方形的边长满足a+b=10,ab=20,试求阴影部分的面积.

分析 (1)此题根据面积的不同求解方法,可得到不同的表示方法.一种可以是3个正方形的面积和6个矩形的面积,一种是大正方形的面积,可得等式(a+b+c)2=a2+b2+c2+2ab+2bc+2ac,
(2)利用S阴影=正方形ABCD的面积+正方形ECGF的面积-三角形BGF的面积-三角形ABD的面积求解.

解答 解:(1)(a+b+c)2=a2+b2+c2+2ab+2bc+2ac
(2)∵a+b=10,ab=20,
∴S阴影=a2+b2-$\frac{1}{2}$(a+b)•b-$\frac{1}{2}$a2=$\frac{1}{2}$a2+$\frac{1}{2}$b2-$\frac{1}{2}$ab=$\frac{1}{2}$(a+b)2-$\frac{3}{2}$ab=$\frac{1}{2}$×102-$\frac{3}{2}$×20=50-30=20.

点评 本题考查了完全平方公式几何意义,解题的关键是注意图形的分割与拼合,会用不同的方法表示同一图形的面积.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

7.如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止,设点P的运动路程为x(cm)在下列图象中,表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.一快递员骑摩托车需要在规定的时间内把快递送到某地,若每小时行驶60km,就早到12分钟;若每小时行驶50km,就要迟到6分钟.
(1)若设路程为xkm,请解答下列问题:以每小时60km的速度到达目的地所需的时间为$\frac{x}{60}$,以每小时50km到达目的地所需的时间为$\frac{x}{50}$;(用含有x的代数式表示)
(2)列出方程,并求出快递员所要骑行的路程.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.已知|a|=|-$\frac{3}{7}$|,则a=±$\frac{3}{7}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.已知:如图,将矩形ABCD沿EF折叠,折痕交BC于点E,交AD于点F.若折叠后点C落在BA的延长线上P处,且AP=2,AB=4,AD=8,求折痕EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.解不等式:
(1)2x+1>0;
(2)ax+b>0.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.已知25x=2000,80y=2000,则$\frac{x+y}{xy}$等于1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.计算:(2-$\sqrt{5}$)2016(2+$\sqrt{5}$)2017=2+$\sqrt{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.若a<b,则3a<3b,-a+1>-b+1,(m2+1)a<(m2+1)b.(用“>”,“<”或“=”填空)

查看答案和解析>>

同步练习册答案