分析 (1)根据四边形ABCD是“等对角四边形”得出∠D=∠B=75°,根据多边形内角和定理求出∠C即可;
(2)连接BD,根据等边对等角得出∠ABD=∠ADB,求出∠CBD=∠CDB,根据等腰三角形的判定得出即可;
(3)根据等对角四边形的定义画出图形即可求解;
(4)分两种情况:①当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,先用含30°角的直角三角形的性质求出AE,得出DE,再用三角函数求出CD,由勾股定理求出AC;
②当∠BCD=∠DAB=60°时,过点D作DM⊥AB于点M,DN⊥BC于点N,则∠AMD=90°,四边形BNDM是矩形,先求出AM、DM,再由矩形的性质得出DN=BM=3,BN=DM=2$\sqrt{3}$,求出CN、BC,根据勾股定理求出AC即可.
解答 (1)解:∵四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=70°,∠B=75°,
∴∠D=∠B=75°,
∴∠C=360°-75°-75°-70°=140°;
(2)证明:如图2,连接BD,
∵AB=AD,
∴∠ABD=∠ADB,
∵∠ABC=∠ADC,
∴∠ABC-∠ABD=∠ADC-∠ADB,
∴∠CBD=∠CDB,
∴CB=CD;
(3)如图所示:
(4)解:分两种情况:
①当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,如图3所示:
∵∠ABC=90°,∠DAB=60°,AB=5,
∴∠E=30°,
∴AE=2AB=10,
∴DE=AE-AD=10-4═6,
∵∠EDC=90°,∠E=30°,
∴CD=2$\sqrt{3}$,
∴AC=$\sqrt{A{D}^{2}+C{D}^{2}}$=$\sqrt{{4}^{2}+(2\sqrt{3})^{2}}$=2$\sqrt{7}$;
②当∠BCD=∠DAB=60°时,
过点D作DM⊥AB于点M,DN⊥BC于点N,如图4所示:
则∠AMD=90°,四边形BNDM是矩形,
∵∠DAB=60°,
∴∠ADM=30°,
∴AM=$\frac{1}{2}$AD=2,
∴DM=2$\sqrt{3}$,
∴BM=AB-AM=5-2=3,
∵四边形BNDM是矩形,
∴DN=BM=3,BN=DM=2$\sqrt{3}$,
∵∠BCD=60°,
∴CN=$\sqrt{3}$,
∴BC=CN+BN=3$\sqrt{3}$,
∴AC=$\sqrt{{5}^{2}+(3\sqrt{3})^{2}}$=2$\sqrt{13}$.
综上所述:AC的长为2$\sqrt{7}$或2$\sqrt{13}$.
故答案为:140,75.
点评 本题是四边形综合题目,考查了新定义、四边形内角和定理、等腰三角形的判定与性质、勾股定理、三角函数、矩形的判定与性质等知识;本题难度较大,综合性强,特别是(4)中,需要进行分类讨论,通过作辅助线运用三角函数和勾股定理才能得出结果.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com