精英家教网 > 初中数学 > 题目详情
精英家教网如图,已知正方形纸片ABCD的边长为4,⊙O的半径为1,圆心在正方形的中心上,将纸片按图示方式折叠,使E A′恰好与⊙O相切于点A′,延长F A′交CD边于点G,则A′G的长是
 
分析:根据翻折变换后EA′是⊙0的切线,然后利用切线的性质,有FG⊥EA′,因为点O是正方形的中心,所以AF=CG,再过点F作DC的垂线交DC于S,在直角△FGS中,设AF=x,由翻折可知A′F=x,由圆的半径为1,利用FA+AO表示出OF,由FG=2OF表示出FG,而FS为正方形的边长为4,GS等于正方形的边长CD-CG-DS,而CG=DS=AF=x,故表示出SG,用勾股定理列出关于x的方程,求出方程的解得到线段AF的长,进而求出A′G的长.
解答:精英家教网解:如图,作FS⊥CD于点S点,
由翻折可知:△AFE≌△FA′E,
∴FA=FA′,
∵四边形ADSF是矩形,
∴AF=SD,AD=FS,
又正方形是以O为对称中心的中心对称图形,
∴AF=CG,FO=OG=
1
2
FG,
设AF=A′F=DS=CG=x,
则GS=4-2x,FO=FA′+OA′=1+x,FG=2(1+x);
在Rt△FSG中,根据勾股定理得FG2=GS2+FS2
即[2(1+x)]2=(4-2x)2+42
解得x=
7
6

∴A′G=FG-FA′=2(1+x)-x=
19
6

故答案为:
19
6
点评:本题考查了中心对称图形的性质,正方形、矩形的性质,勾股定理,以及折叠的性质,利用了数形结合及方程的思想,要求学生理解正方形是中心对称图形,其对角线的交点为对称中心,借助图形,利用勾股定理列方程的思路来解决问题,熟练掌握性质与定理是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知正方形纸片ABCD的边长为2,将正方形纸片折叠,使顶点A落在边CD上的点P处(点P精英家教网与C、D不重合),折痕为EF,折叠后AB边落在PQ的位置,PQ与BC交于点G.
(1)观察操作结果,找到一个与△EDP相似的三角形,并证明你的结论;
(2)当点P位于CD中点时,你找到的三角形与△EDP周长的比是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知正方形纸片ABCD的边长为8,O是正方形的中心,⊙O的半径为2.沿EF折叠纸片,使点A落在⊙O上的A1处,且EA1所在直线与⊙O只有一个公共点A1,延长FA1交CD边于点G,则A1G的长是(  )
A、
19
3
B、6
C、
17
3
D、
20
3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知正方形纸片ABCD的边长为8,⊙0的半径为2,圆心在正方形的中心上,将纸片按图示方式折叠,使E A′恰好与⊙0相切于点A′(△EFA′与⊙0除切点外无重叠部分),延长FA′交CD边于点G,则A′G的长是
19
3
19
3

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知正方形纸片ABCD的边长为8,⊙O的半径为2,圆心在正方形的中心上,将纸片按图示方式折叠,使EA恰好与⊙O相切于点A′(△EFA′与⊙O除切点外无重叠部分),延长FA′交CD边于点G,求A′G的长.

查看答案和解析>>

同步练习册答案